# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from pathlib import Path from towhee import register from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color import torch import ipdb from towhee.types.image_utils import from_pil, to_pil from torchvision import transforms from torchvision.transforms.functional import InterpolationMode @register(output_schema=['vec']) class Blip(NNOperator): """ BLIP multi-modal embedding operator """ def __init__(self, model_name: str, modality: str): super().__init__() sys.path.append(str(Path(__file__).parent)) from models.blip import blip_feature_extractor image_size = 224 model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth' self.model = blip_feature_extractor(pretrained=model_url, image_size=image_size, vit='base') self._modality = modality self.device = "cuda" if torch.cuda.is_available() else "cpu" self.tfms = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) def __call__(self, data): ipdb.set_trace() if self._modality == 'image': vec = self._inference_from_image(data) elif self._modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec.detach().cpu().numpy().flatten() def _inference_from_text(self, text): text_feature = self.model(None, text, mode='text', device=self.device)[0,0] return text_feature @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): #img = to_pil(img) #image = self.tfms(img).unsqueeze(0).to(self.device) #image_features = self.model.encode_image(image) img = self._preprocess(img) caption = '' image_feature = self.model(img, caption, mode='image', device=self.device)[0,0] return image_feature def _preprocess(self, img): img = to_pil(img) processed_img = self.tfms(img).unsqueeze(0).to(self.device) return processed_img