# Image-Text Retrieval Embdding with BLIP *author: David Wang*
## Description This operator extracts features for image or text with [BLIP](https://arxiv.org/abs/2201.12086) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a adaptation from [salesforce/BLIP](https://github.com/salesforce/BLIP).
## Code Example Load an image from path './teddy.jpg' to generate an image embedding. Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee.dc2 import pipe, ops, DataCollection img_pipe = ( pipe.input('url') .map('url', 'img', ops.image_decode.cv2_rgb()) .map('img', 'vec', ops.image_text_embedding.blip(model_name='blip_itm_base_coco', modality='image')) .output('img', 'vec') ) text_pipe = ( pipe.input('text') .map('text', 'vec', ops.image_text_embedding.blip(model_name='blip_itm_base_coco', modality='text')) .output('text', 'vec') ) DataCollection(img_pipe('./teddy.jpg')).show() DataCollection(text_pipe('A teddybear on a skateboard in Times Square.')).show() ``` result1 result2
## Factory Constructor Create the operator via the following factory method ***blip(model_name, modality)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of BLIP. Supported model names: - blip_itm_base_coco - blip_itm_large_coco - blip_itm_base_flickr - blip_itm_large_flickr ​ ***modality:*** *str* ​ Which modality(*image* or *text*) is used to generate the embedding.
## Interface An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. ***save_model(format='pytorch', path='default')*** Save model to local with specified format. **Parameters:** ***format***: *str* ​ The format of saved model, defaults to 'pytorch'. ***path***: *str* ​ The path where model is saved to. By default, it will save model to the operator directory. ```python from towhee import ops op = ops.image_text_embedding.blip(model_name='blip_itm_base_coco', modality='image').get_op() op.save_model('onnx', 'test.onnx') ```
**Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data (image or text based on specified modality) to generate embedding. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data (image or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model.