clip-vision
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
81 lines
2.6 KiB
81 lines
2.6 KiB
# Copyright 2021 Zilliz. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import torch
|
|
import numpy as np
|
|
from torchvision import transforms as T
|
|
|
|
from towhee.operator import NNOperator, SharedType
|
|
from towhee.dc2 import accelerate
|
|
from towhee.models import clip
|
|
|
|
|
|
@accelerate
|
|
class Model:
|
|
def __init__(self, model_name, device='cpu'):
|
|
self.model = clip.create_model(model_name=model_name, pretrained=True, device=device).visual
|
|
self.model.eval()
|
|
print('Create local model')
|
|
|
|
def __call__(self, data: 'Tensor'):
|
|
return self.model(data)
|
|
|
|
|
|
class ClipVision(NNOperator):
|
|
def __init__(self, model_name='clip_vit_b32'):
|
|
super().__init__()
|
|
self._device = None
|
|
|
|
self.tfms = torch.nn.Sequential(
|
|
T.Resize(224, interpolation=T.InterpolationMode.BICUBIC),
|
|
T.CenterCrop(224),
|
|
T.ConvertImageDtype(torch.float),
|
|
T.Normalize(
|
|
(0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
|
).to(self.device)
|
|
self.model = Model(model_name, self.device)
|
|
|
|
@property
|
|
def device(self):
|
|
if self._device is None:
|
|
if self._device_id < 0:
|
|
self._device = torch.device('cpu')
|
|
else:
|
|
self._device = torch.device(self._device_id)
|
|
return self._device
|
|
|
|
def __call__(self, image: 'Image'):
|
|
img = np.transpose(image, [2, 0, 1])
|
|
data = torch.from_numpy(img)
|
|
data = data.to(self.device)
|
|
image_tensor = self.tfms(data).unsqueeze(0)
|
|
features = self.model(image_tensor)
|
|
return features.detach().cpu().numpy().flatten()
|
|
|
|
def save_model(self, model_type, output_file, args=None):
|
|
if model_type != 'onnx':
|
|
return False
|
|
x = torch.randn((1, 3, 224, 224))
|
|
|
|
torch.onnx.export(self.model.model, x, output_file, input_names=['INPUT0'],
|
|
output_names=['OUTPUT0'], dynamic_axes={'INPUT0': [0]})
|
|
return True
|
|
|
|
@property
|
|
def supported_formats(self):
|
|
return ['onnx']
|
|
|
|
@property
|
|
def shared_type(self):
|
|
return SharedType.Shareable
|