|
|
|
# Copyright 2021 Zilliz. All rights reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import sys
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from torchvision import transforms
|
|
|
|
|
|
|
|
from towhee.types.image_utils import to_pil
|
|
|
|
from towhee.operator.base import NNOperator, OperatorFlag
|
|
|
|
from towhee.types.arg import arg, to_image_color
|
|
|
|
from towhee import register
|
|
|
|
from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor
|
|
|
|
from train_clip_with_hf_trainer import train_with_hf_trainer
|
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec'])
|
|
|
|
class Clip(NNOperator):
|
|
|
|
"""
|
|
|
|
CLIP multi-modal embedding operator
|
|
|
|
"""
|
|
|
|
def __init__(self, model_name: str, modality: str):
|
|
|
|
self.modality = modality
|
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
cfg = self._configs()[model_name]
|
|
|
|
self.model = CLIPModel.from_pretrained(cfg['name'])
|
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(cfg['name'])
|
|
|
|
self.processor = CLIPProcessor.from_pretrained(cfg['name'])
|
|
|
|
|
|
|
|
def inference_single_data(self, data):
|
|
|
|
if self.modality == 'image':
|
|
|
|
vec = self._inference_from_image(data)
|
|
|
|
elif self.modality == 'text':
|
|
|
|
vec = self._inference_from_text(data)
|
|
|
|
else:
|
|
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
|
|
|
return vec.detach().cpu().numpy().flatten()
|
|
|
|
|
|
|
|
def __call__(self, data):
|
|
|
|
if not isinstance(data, list):
|
|
|
|
data = [data]
|
|
|
|
else:
|
|
|
|
data = data
|
|
|
|
results = []
|
|
|
|
for single_data in data:
|
|
|
|
result = self.inference_single_data(single_data)
|
|
|
|
results.append(result)
|
|
|
|
if len(data) == 1:
|
|
|
|
return results[0]
|
|
|
|
else:
|
|
|
|
return results
|
|
|
|
|
|
|
|
def _inference_from_text(self, text):
|
|
|
|
tokens = self.tokenizer([text], padding=True, return_tensors="pt")
|
|
|
|
text_features = self.model.get_text_features(**tokens)
|
|
|
|
return text_features
|
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB'))
|
|
|
|
def _inference_from_image(self, img):
|
|
|
|
img = to_pil(img)
|
|
|
|
inputs = processor(images=img, return_tensors="pt")
|
|
|
|
image_features = self.model.get_image_features(**inputs)
|
|
|
|
return image_features
|
|
|
|
|
|
|
|
def train(self, **kwargs):
|
|
|
|
data_args = kwargs.pop('data_args', None)
|
|
|
|
training_args = kwargs.pop('training_args', None)
|
|
|
|
train_with_hf_trainer(self.model, self.tokenizer, data_args, training_args)
|
|
|
|
|
|
|
|
def _configs(self):
|
|
|
|
config = {}
|
|
|
|
config['clip_vit_base_32'] = {}
|
|
|
|
config['clip_vit_base_32']['name'] = 'openai/clip-vit-base-patch16'
|
|
|
|
config['clip_vit_base_16'] = {}
|
|
|
|
config['clip_vit_base_16']['name'] = 'openai/clip-vit-base-patch32'
|
|
|
|
config['clip_vit_large_14'] = {}
|
|
|
|
config['clip_vit_large_14'] = 'openai/clip-vit-large-patch14'
|
|
|
|
config['clip_vit_large_14_336'] = {}
|
|
|
|
config['clip_vit_large_14_336']['name'] ='openai/clip-vit-large-patch14-336'
|
|
|
|
return config
|