|
|
@ -3,7 +3,6 @@ import os |
|
|
|
import sys |
|
|
|
import transformers |
|
|
|
import dataclasses |
|
|
|
import ipdb |
|
|
|
from dataclasses import dataclass, field |
|
|
|
from typing import Optional, List |
|
|
|
|
|
|
@ -21,6 +20,7 @@ from transformers import ( |
|
|
|
is_torch_tpu_available, |
|
|
|
set_seed, |
|
|
|
) |
|
|
|
from transformers.trainer_utils import get_last_checkpoint |
|
|
|
|
|
|
|
# We use torchvision for faster image pre-processing. The transforms are implemented as nn.Module, |
|
|
|
# so we jit it to be faster. |
|
|
@ -180,16 +180,15 @@ def train_with_hf_trainer(model, tokenizer, data_args, training_args, **kwargs): |
|
|
|
get_dataclasses_help(TrainingArguments) |
|
|
|
training_args = dataclass_from_dict(TrainingArguments, training_args) |
|
|
|
|
|
|
|
# 2. Setup logging |
|
|
|
# Setup logging |
|
|
|
logging.basicConfig( |
|
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
|
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
|
|
handlers=[logging.StreamHandler(sys.stdout)], |
|
|
|
) |
|
|
|
|
|
|
|
# 2. Setup logging |
|
|
|
# Setup logging |
|
|
|
#+ training_args |
|
|
|
#log_level = training_args.get_process_log_level() |
|
|
|
log_level = training_args.get_process_log_level() |
|
|
|
logger.setLevel(log_level) |
|
|
|
transformers.utils.logging.set_verbosity(log_level) |
|
|
@ -204,9 +203,19 @@ def train_with_hf_trainer(model, tokenizer, data_args, training_args, **kwargs): |
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
|
|
# Detecting last checkpoint and eventualy continue from last checkpoint |
|
|
|
### place holder ### |
|
|
|
### place holder ### |
|
|
|
### place holder ### |
|
|
|
last_checkpoint = None |
|
|
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: |
|
|
|
last_checkpoint = get_last_checkpoint(training_args.output_dir) |
|
|
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: |
|
|
|
raise ValueError( |
|
|
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. " |
|
|
|
"Use --overwrite_output_dir to overcome." |
|
|
|
) |
|
|
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: |
|
|
|
logger.info( |
|
|
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " |
|
|
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
# Load dataset |
|
|
@ -384,7 +393,6 @@ def train_with_hf_trainer(model, tokenizer, data_args, training_args, **kwargs): |
|
|
|
) |
|
|
|
|
|
|
|
# Training |
|
|
|
last_checkpoint = None |
|
|
|
if training_args.do_train: |
|
|
|
checkpoint = None |
|
|
|
if training_args.resume_from_checkpoint is not None: |
|
|
|