|
|
@ -11,10 +11,10 @@ |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
|
|
|
|
import sys |
|
|
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
from torch import nn |
|
|
|
from torchvision import transforms |
|
|
|
|
|
|
|
from towhee.types.image_utils import to_pil |
|
|
@ -22,29 +22,55 @@ from towhee.operator.base import NNOperator, OperatorFlag |
|
|
|
from towhee.types.arg import arg, to_image_color |
|
|
|
from towhee import register |
|
|
|
from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor |
|
|
|
from train_clip_with_hf_trainer import train_with_hf_trainer |
|
|
|
|
|
|
|
#@accelerate |
|
|
|
class CLIPModelVision(nn.Module): |
|
|
|
def __init__(self, model): |
|
|
|
super().__init__() |
|
|
|
self.model = model |
|
|
|
|
|
|
|
def forward(self, pixel_values): |
|
|
|
image_embeds = self.model.get_image_features(pixel_values) |
|
|
|
return image_embeds |
|
|
|
|
|
|
|
#@accelerate |
|
|
|
class CLIPModelText(nn.Module): |
|
|
|
def __init__(self, model): |
|
|
|
super().__init__() |
|
|
|
self.model = model |
|
|
|
|
|
|
|
def forward(self, input_ids, attention_mask): |
|
|
|
text_embeds = self.model.get_text_features(input_ids, attention_mask) |
|
|
|
return text_embeds |
|
|
|
|
|
|
|
|
|
|
|
@register(output_schema=['vec']) |
|
|
|
class Clip(NNOperator): |
|
|
|
""" |
|
|
|
CLIP multi-modal embedding operator |
|
|
|
""" |
|
|
|
def __init__(self, model_name: str, modality: str): |
|
|
|
def __init__(self, model_name: str, modality: str, device, checkpoint_path): |
|
|
|
self.model_name = model_name |
|
|
|
self.modality = modality |
|
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
cfg = self._configs()[model_name] |
|
|
|
self.model = CLIPModel.from_pretrained(cfg['name']) |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(cfg['name']) |
|
|
|
self.processor = CLIPProcessor.from_pretrained(cfg['name']) |
|
|
|
clip_model = CLIPModel.from_pretrained(cfg) |
|
|
|
if self.modality == 'image': |
|
|
|
self.model = CLIPModelVision(clip_model) |
|
|
|
elif self.modality == 'text': |
|
|
|
self.model = CLIPModelText(clip_model) |
|
|
|
else: |
|
|
|
raise ValueError("modality[{}] not implemented.".format(self.modality)) |
|
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(cfg) |
|
|
|
self.processor = CLIPProcessor.from_pretrained(cfg) |
|
|
|
|
|
|
|
def inference_single_data(self, data): |
|
|
|
if self.modality == 'image': |
|
|
|
vec = self._inference_from_image(data) |
|
|
|
elif self.modality == 'text': |
|
|
|
elif self.modality == 'text': |
|
|
|
vec = self._inference_from_text(data) |
|
|
|
else: |
|
|
|
raise ValueError("modality[{}] not implemented.".format(self._modality)) |
|
|
|
raise ValueError("modality[{}] not implemented.".format(self.modality)) |
|
|
|
return vec.detach().cpu().numpy().flatten() |
|
|
|
|
|
|
|
def __call__(self, data): |
|
|
@ -63,29 +89,122 @@ class Clip(NNOperator): |
|
|
|
|
|
|
|
def _inference_from_text(self, text): |
|
|
|
tokens = self.tokenizer([text], padding=True, return_tensors="pt") |
|
|
|
text_features = self.model.get_text_features(**tokens) |
|
|
|
text_features = self.model(tokens['input_ids'],tokens['attention_mask']) |
|
|
|
return text_features |
|
|
|
|
|
|
|
@arg(1, to_image_color('RGB')) |
|
|
|
def _inference_from_image(self, img): |
|
|
|
img = to_pil(img) |
|
|
|
inputs = processor(images=img, return_tensors="pt") |
|
|
|
image_features = self.model.get_image_features(**inputs) |
|
|
|
inputs = self.processor(images=img, return_tensors="pt") |
|
|
|
image_features = self.model(inputs['pixel_values']) |
|
|
|
return image_features |
|
|
|
|
|
|
|
def train(self, **kwargs): |
|
|
|
import sys |
|
|
|
import pathlib |
|
|
|
path = str(pathlib.Path(__file__).parent) |
|
|
|
print(path) |
|
|
|
sys.path.append(path) |
|
|
|
from train_clip_with_hf_trainer import train_with_hf_trainer |
|
|
|
data_args = kwargs.pop('data_args', None) |
|
|
|
training_args = kwargs.pop('training_args', None) |
|
|
|
train_with_hf_trainer(self.model, self.tokenizer, data_args, training_args) |
|
|
|
|
|
|
|
def _configs(self): |
|
|
|
config = {} |
|
|
|
config['clip_vit_base_32'] = {} |
|
|
|
config['clip_vit_base_32']['name'] = 'openai/clip-vit-base-patch16' |
|
|
|
config['clip_vit_base_16'] = {} |
|
|
|
config['clip_vit_base_16']['name'] = 'openai/clip-vit-base-patch32' |
|
|
|
config['clip_vit_large_14'] = {} |
|
|
|
config['clip_vit_base_32'] = 'openai/clip-vit-base-patch16' |
|
|
|
config['clip_vit_base_16'] = 'openai/clip-vit-base-patch32' |
|
|
|
config['clip_vit_large_14'] = 'openai/clip-vit-large-patch14' |
|
|
|
config['clip_vit_large_14_336'] = {} |
|
|
|
config['clip_vit_large_14_336']['name'] ='openai/clip-vit-large-patch14-336' |
|
|
|
config['clip_vit_large_14_336'] ='openai/clip-vit-large-patch14-336' |
|
|
|
return config |
|
|
|
|
|
|
|
@property |
|
|
|
def supported_formats(self): |
|
|
|
onnxes = self.supported_model_names(format='onnx') |
|
|
|
if self.model_name in onnxes: |
|
|
|
return ['onnx'] |
|
|
|
else: |
|
|
|
return ['pytorch'] |
|
|
|
|
|
|
|
@staticmethod |
|
|
|
def supported_model_names(format: str = None): |
|
|
|
if format == 'pytorch' or format == 'torchscript' or format == 'onnx': |
|
|
|
model_list = [ |
|
|
|
'openai/clip-vit-base-patch16', |
|
|
|
'openai/clip-vit-base-patch32', |
|
|
|
'openai/clip-vit-large-patch14', |
|
|
|
'openai/clip-vit-large-patch14-336' |
|
|
|
] |
|
|
|
else: |
|
|
|
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".') |
|
|
|
return model_list |
|
|
|
|
|
|
|
@property |
|
|
|
def _model(self): |
|
|
|
return self.model |
|
|
|
|
|
|
|
def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'): |
|
|
|
import os |
|
|
|
from PIL import Image |
|
|
|
from torch.onnx import export as onnx_export |
|
|
|
|
|
|
|
if output_file == 'default': |
|
|
|
output_file = str(Path(__file__).parent) |
|
|
|
output_file = os.path.join(output_file, 'saved', model_type) |
|
|
|
os.makedirs(output_file, exist_ok=True) |
|
|
|
name = self.model_name.replace('/', '-') |
|
|
|
output_file = os.path.join(output_file, name) |
|
|
|
if model_type in ['pytorch', 'torchscript']: |
|
|
|
output_file = output_file + '.pt' |
|
|
|
elif model_type == 'onnx': |
|
|
|
output_file = output_file + '.onnx' |
|
|
|
else: |
|
|
|
raise AttributeError('Unsupported model_type.') |
|
|
|
if self.modality == 'image': |
|
|
|
sz = self.processor.feature_extractor.crop_size |
|
|
|
dummy_input = Image.new('RGB', (sz, sz), color = 'red') |
|
|
|
inputs = self.processor(images=dummy_input, return_tensors='pt') # a dictionary |
|
|
|
elif self.modality == 'text': |
|
|
|
dummy_input = 'dummy' |
|
|
|
inputs = self.tokenizer(dummy_input, padding=True, truncation=True, return_tensors='pt') # a dictionary |
|
|
|
else: |
|
|
|
raise ValueError("modality[{}] not implemented.".format(self.modality)) |
|
|
|
|
|
|
|
if model_type == 'pytorch': |
|
|
|
torch.save(self._model, output_file) |
|
|
|
elif model_type == 'torchscript': |
|
|
|
inputs = list(inputs.values()) |
|
|
|
try: |
|
|
|
try: |
|
|
|
jit_model = torch.jit.script(self._model) |
|
|
|
except Exception: |
|
|
|
jit_model = torch.jit.trace(self._model, inputs, strict=False) |
|
|
|
torch.jit.save(jit_model, output_file) |
|
|
|
except Exception as e: |
|
|
|
log.error(f'Fail to save as torchscript: {e}.') |
|
|
|
raise RuntimeError(f'Fail to save as torchscript: {e}.') |
|
|
|
elif model_type == 'onnx': |
|
|
|
if self.modality == 'image': |
|
|
|
input_names= ['pixel_values'] |
|
|
|
output_names=['image_embeds'] |
|
|
|
dynamic_axes={'pixel_values': {0: 'batch'}, 'image_embeds': {0: 'batch'}} |
|
|
|
elif self.modality == 'text': |
|
|
|
input_names= ['input_ids', 'attention_mask'] |
|
|
|
output_names=['text_embeds'] |
|
|
|
dynamic_axes={'input_ids': {0: 'batch', 1: 'sequence'}, 'attention_mask': {0: 'batch', 1: 'sequence'}, 'text_embeds': {0: 'batch'}} |
|
|
|
else: |
|
|
|
raise ValueError("modality[{}] not implemented.".format(self.modality)) |
|
|
|
|
|
|
|
onnx_export(self.model, |
|
|
|
(dict(inputs),), |
|
|
|
f=Path(output_file), |
|
|
|
input_names= input_names, |
|
|
|
output_names=output_names, |
|
|
|
dynamic_axes=dynamic_axes, |
|
|
|
do_constant_folding=True, |
|
|
|
opset_version=14, |
|
|
|
) |
|
|
|
else: |
|
|
|
pass |
|
|
|
raise NotImplementedError |
|
|
|
|
|
|
|