logo
Browse Source

:w

:update the clip for serialization.

Signed-off-by: wxywb <xy.wang@zilliz.com>
main
wxywb 2 years ago
parent
commit
9ecdb950f8
  1. 4
      __init__.py
  2. 155
      clip.py
  3. 3
      requirements.txt

4
__init__.py

@ -15,5 +15,5 @@
from .clip import Clip
def clip(model_name: str, modality: str):
return Clip(model_name, modality)
def clip(model_name: str, modality: str, device:str = None, checkpoint_path:str = None):
return Clip(model_name, modality, device, checkpoint_path)

155
clip.py

@ -11,10 +11,10 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from torch import nn
from torchvision import transforms
from towhee.types.image_utils import to_pil
@ -22,29 +22,55 @@ from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee import register
from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor
from train_clip_with_hf_trainer import train_with_hf_trainer
#@accelerate
class CLIPModelVision(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, pixel_values):
image_embeds = self.model.get_image_features(pixel_values)
return image_embeds
#@accelerate
class CLIPModelText(nn.Module):
def __init__(self, model):
super().__init__()
self.model = model
def forward(self, input_ids, attention_mask):
text_embeds = self.model.get_text_features(input_ids, attention_mask)
return text_embeds
@register(output_schema=['vec'])
class Clip(NNOperator):
"""
CLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
def __init__(self, model_name: str, modality: str, device, checkpoint_path):
self.model_name = model_name
self.modality = modality
self.device = "cuda" if torch.cuda.is_available() else "cpu"
cfg = self._configs()[model_name]
self.model = CLIPModel.from_pretrained(cfg['name'])
self.tokenizer = CLIPTokenizer.from_pretrained(cfg['name'])
self.processor = CLIPProcessor.from_pretrained(cfg['name'])
clip_model = CLIPModel.from_pretrained(cfg)
if self.modality == 'image':
self.model = CLIPModelVision(clip_model)
elif self.modality == 'text':
self.model = CLIPModelText(clip_model)
else:
raise ValueError("modality[{}] not implemented.".format(self.modality))
self.tokenizer = CLIPTokenizer.from_pretrained(cfg)
self.processor = CLIPProcessor.from_pretrained(cfg)
def inference_single_data(self, data):
if self.modality == 'image':
vec = self._inference_from_image(data)
elif self.modality == 'text':
elif self.modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
raise ValueError("modality[{}] not implemented.".format(self.modality))
return vec.detach().cpu().numpy().flatten()
def __call__(self, data):
@ -63,29 +89,122 @@ class Clip(NNOperator):
def _inference_from_text(self, text):
tokens = self.tokenizer([text], padding=True, return_tensors="pt")
text_features = self.model.get_text_features(**tokens)
text_features = self.model(tokens['input_ids'],tokens['attention_mask'])
return text_features
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = to_pil(img)
inputs = processor(images=img, return_tensors="pt")
image_features = self.model.get_image_features(**inputs)
inputs = self.processor(images=img, return_tensors="pt")
image_features = self.model(inputs['pixel_values'])
return image_features
def train(self, **kwargs):
import sys
import pathlib
path = str(pathlib.Path(__file__).parent)
print(path)
sys.path.append(path)
from train_clip_with_hf_trainer import train_with_hf_trainer
data_args = kwargs.pop('data_args', None)
training_args = kwargs.pop('training_args', None)
train_with_hf_trainer(self.model, self.tokenizer, data_args, training_args)
def _configs(self):
config = {}
config['clip_vit_base_32'] = {}
config['clip_vit_base_32']['name'] = 'openai/clip-vit-base-patch16'
config['clip_vit_base_16'] = {}
config['clip_vit_base_16']['name'] = 'openai/clip-vit-base-patch32'
config['clip_vit_large_14'] = {}
config['clip_vit_base_32'] = 'openai/clip-vit-base-patch16'
config['clip_vit_base_16'] = 'openai/clip-vit-base-patch32'
config['clip_vit_large_14'] = 'openai/clip-vit-large-patch14'
config['clip_vit_large_14_336'] = {}
config['clip_vit_large_14_336']['name'] ='openai/clip-vit-large-patch14-336'
config['clip_vit_large_14_336'] ='openai/clip-vit-large-patch14-336'
return config
@property
def supported_formats(self):
onnxes = self.supported_model_names(format='onnx')
if self.model_name in onnxes:
return ['onnx']
else:
return ['pytorch']
@staticmethod
def supported_model_names(format: str = None):
if format == 'pytorch' or format == 'torchscript' or format == 'onnx':
model_list = [
'openai/clip-vit-base-patch16',
'openai/clip-vit-base-patch32',
'openai/clip-vit-large-patch14',
'openai/clip-vit-large-patch14-336'
]
else:
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
return model_list
@property
def _model(self):
return self.model
def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'):
import os
from PIL import Image
from torch.onnx import export as onnx_export
if output_file == 'default':
output_file = str(Path(__file__).parent)
output_file = os.path.join(output_file, 'saved', model_type)
os.makedirs(output_file, exist_ok=True)
name = self.model_name.replace('/', '-')
output_file = os.path.join(output_file, name)
if model_type in ['pytorch', 'torchscript']:
output_file = output_file + '.pt'
elif model_type == 'onnx':
output_file = output_file + '.onnx'
else:
raise AttributeError('Unsupported model_type.')
if self.modality == 'image':
sz = self.processor.feature_extractor.crop_size
dummy_input = Image.new('RGB', (sz, sz), color = 'red')
inputs = self.processor(images=dummy_input, return_tensors='pt') # a dictionary
elif self.modality == 'text':
dummy_input = 'dummy'
inputs = self.tokenizer(dummy_input, padding=True, truncation=True, return_tensors='pt') # a dictionary
else:
raise ValueError("modality[{}] not implemented.".format(self.modality))
if model_type == 'pytorch':
torch.save(self._model, output_file)
elif model_type == 'torchscript':
inputs = list(inputs.values())
try:
try:
jit_model = torch.jit.script(self._model)
except Exception:
jit_model = torch.jit.trace(self._model, inputs, strict=False)
torch.jit.save(jit_model, output_file)
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif model_type == 'onnx':
if self.modality == 'image':
input_names= ['pixel_values']
output_names=['image_embeds']
dynamic_axes={'pixel_values': {0: 'batch'}, 'image_embeds': {0: 'batch'}}
elif self.modality == 'text':
input_names= ['input_ids', 'attention_mask']
output_names=['text_embeds']
dynamic_axes={'input_ids': {0: 'batch', 1: 'sequence'}, 'attention_mask': {0: 'batch', 1: 'sequence'}, 'text_embeds': {0: 'batch'}}
else:
raise ValueError("modality[{}] not implemented.".format(self.modality))
onnx_export(self.model,
(dict(inputs),),
f=Path(output_file),
input_names= input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
do_constant_folding=True,
opset_version=14,
)
else:
pass
raise NotImplementedError

3
requirements.txt

@ -1,4 +1,5 @@
torchvision
torch
towhee
towhee.models
towhee.models
transformers

Loading…
Cancel
Save