import logging import os import sys import transformers import dataclasses import ipdb from dataclasses import dataclass, field from typing import Optional, List import torch from datasets import load_dataset from PIL import Image from torchvision.io import ImageReadMode, read_image from torchvision.transforms import CenterCrop, ConvertImageDtype, Normalize, Resize from torchvision.transforms.functional import InterpolationMode from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TrainingArguments, default_data_collator, is_torch_tpu_available, set_seed, ) # We use torchvision for faster image pre-processing. The transforms are implemented as nn.Module, # so we jit it to be faster. logger = logging.getLogger(__name__) dataset_name_mapping = { "image_caption_dataset.py": ("image_path", "caption"), } def dataclass_from_dict(klass, d): try: fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)} return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d}) except: return d # Not a dataclass field @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ dataset_name: Optional[str] = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) data_dir: Optional[str] = field(default=None, metadata={"help": "The data directory containing input files."}) image_column: Optional[str] = field( default="image_path", metadata={"help": "The name of the column in the datasets containing the full image file paths."}, ) caption_column: Optional[str] = field( default="caption", metadata={"help": "The name of the column in the datasets containing the image captions."}, ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a jsonlines file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file (a jsonlines file)."}, ) max_seq_length: Optional[int] = field( default=77, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) image_mean: Optional[str] = field( default=None, metadata={"help": "image preprocessing mean"} ) image_std: Optional[str] = field( default=None, metadata={"help": "image preprocessing std"} ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension == "json", "`validation_file` should be a json file." class Transform(torch.nn.Module): def __init__(self, image_size, mean, std): super().__init__() self.transforms = torch.nn.Sequential( Resize([image_size], interpolation=InterpolationMode.BICUBIC), CenterCrop(image_size), ConvertImageDtype(torch.float), Normalize(mean, std), ) def forward(self, x) -> torch.Tensor: """`x` should be an instance of `PIL.Image.Image`""" with torch.no_grad(): x = self.transforms(x) return x def collate_fn(examples): pixel_values = torch.stack([example["pixel_values"] for example in examples]) input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long) attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long) return { "pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask, "return_loss": True, } def train_with_hf_trainer(model, tokenizer, data_args, training_args, **kwargs): import evaluate import datasets from transformers import Trainer from datasets import load_dataset from towhee.trainer.training_config import get_dataclasses_help print('**** DataTrainingArguments ****') get_dataclasses_help(DataTrainingArguments) data_args = dataclass_from_dict(DataTrainingArguments, data_args) print('**** TrainingArguments ****') get_dataclasses_help(TrainingArguments) training_args = dataclass_from_dict(TrainingArguments, training_args) # 2. Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) # 2. Setup logging #+ training_args #log_level = training_args.get_process_log_level() log_level = training_args.get_process_log_level() logger.setLevel(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() #!!!!!!!! temp_cache_dir = data_args.cache_dir # Log on each process the small summary: #training_args # +local_rank # +device # +n_gpu # +local_rank # +fp16 logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # 3. Detecting last checkpoint and eventualy continue from last checkpoint ### place holder ### ### place holder ### ### place holder ### # 4. Load dataset # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files this script will use the first column for the full image path and the second column for the # captions (unless you specify column names for this with the `image_column` and `caption_column` arguments). # #data_args # +dataset_name # +dataset_config_name # +cache_dir # +data_dir # +train_file # +validation_file # +test_file #model_args # +use_auth_token # +cache_dir if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=temp_cache_dir, keep_in_memory=False, data_dir=data_args.data_dir, # use_auth_token=True if model_args.use_auth_token else None, ) else: data_files = {} if data_args.train_file is not None: data_files["train"] = data_args.train_file extension = data_args.train_file.split(".")[-1] if data_args.validation_file is not None: data_files["validation"] = data_args.validation_file extension = data_args.validation_file.split(".")[-1] if data_args.test_file is not None: data_files["test"] = data_args.test_file extension = data_args.test_file.split(".")[-1] dataset = load_dataset( extension, data_files=data_files, cache_dir=temp_cache_dir, # use_auth_token=True if model_args.use_auth_token else None, ) # 5. Load pretrained model, tokenizer, and feature extractor #model_args # +tokenizer_name # +cache_dir # +use_fast_tokenizer #@if model_args.tokenizer_name: #@ tokenizer = AutoTokenizer.from_pretrained( #@ model_args.tokenizer_name, cache_dir=temp_cache_dir, use_fast=model_args.use_fast_tokenizer #@ ) #@# --- for CLIP, tokenizer is fixed # Load feature_extractor, in this script we only use this to get the mean and std for normalization. #model_args # +feature_extractor_name # +model_name_or_path # +cache_dir # +model_revision # +use_auth_token #@feature_extractor = AutoFeatureExtractor.from_pretrained( #@ model_args.feature_extractor_name or model_args.model_name_or_path, #@ cache_dir=temp_cache_dir, #@ revision=model_args.model_revision, #@ use_auth_token=True if model_args.use_auth_token else None, #@) # 只为了拿到mean 和 std # load model #@model = AutoModel.from_pretrained() config = model.config #选择text或者vision freeze住 #model_args # +freeze_vision_model # +freeze_text_model def _freeze_params(module): for param in module.parameters(): param.requires_grad = False if model_args.freeze_vision_model: _freeze_params(model.vision_model) if model_args.freeze_text_model: _freeze_params(model.text_model) #!!!!!!! freeze freeze_vision_model = False freeze_text_model = False if freeze_vision_model is True: _freeze_params(model.vision_model) if freeze_text_model is True: _freeze_params(model.text_model) set_seed(training_args.seed) if training_args.do_train: column_names = dataset["train"].column_names elif training_args.do_eval: column_names = dataset["validation"].column_names elif training_args.do_predict: column_names = dataset["test"].column_names else: logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.") return dataset_columns = dataset_name_mapping.get(data_args.dataset_name, None) if data_args.image_column is None: image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] else: image_column = data_args.image_column if image_column not in column_names: raise ValueError( f"--image_column' value '{data_args.image_column}' needs to be one of: {', '.join(column_names)}" ) if data_args.caption_column is None: caption_column = dataset_columns[1] if dataset_columns is not None else column_names[1] else: caption_column = data_args.caption_column if caption_column not in column_names: raise ValueError( f"--caption_column' value '{data_args.caption_column}' needs to be one of: {', '.join(column_names)}" ) #image_column = 'image_path' #caption_column = 'caption' image_mean, image_std = data_args.image_mean, data_args.image_std # 7. Preprocessing the datasets. # Initialize torchvision transforms and jit it for faster processing. #这个地方需要image_size,image_mean,image_std image_transformations = Transform( config.vision_config.image_size, image_mean, image_std ) image_transformations = torch.jit.script(image_transformations) # Preprocessing the datasets. # We need to tokenize input captions and transform the images. #data_args # +max_seq_length #caption_column #!!!!!!!!!!!!!!!!! #from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor #tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32") def tokenize_captions(examples): captions = [caption for caption in examples[caption_column]] text_inputs = tokenizer(captions, max_length=data_args.max_seq_length, padding="max_length", truncation=True) examples["input_ids"] = text_inputs.input_ids examples["attention_mask"] = text_inputs.attention_mask return examples def transform_images(examples): images = [read_image(image_file, mode=ImageReadMode.RGB) for image_file in examples[image_column]] examples["pixel_values"] = [image_transformations(image) for image in images] return examples def filter_corrupt_images(examples): """remove problematic images""" valid_images = [] for image_file in examples[image_column]: try: Image.open(image_file) valid_images.append(True) except Exception: valid_images.append(False) return valid_images if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: max_train_samples = min(len(train_dataset), data_args.max_train_samples) train_dataset = train_dataset.select(range(max_train_samples)) train_dataset = train_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) train_dataset = train_dataset.map( function=tokenize_captions, batched=True, remove_columns=[col for col in column_names if col != image_column], num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on train dataset", ) # Transform images on the fly as doing it on the whole dataset takes too much time. train_dataset.set_transform(transform_images) #training_args # +do_eval #data_args # +max_eval_samples # +preprocessing_num_workers # +overwrite_cache if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a train validation") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples) eval_dataset = eval_dataset.select(range(max_eval_samples)) eval_dataset = eval_dataset.filter( filter_corrupt_images, batched=True, num_proc=data_args.preprocessing_num_workers ) eval_dataset = eval_dataset.map( function=tokenize_captions, batched=True, num_proc=data_args.preprocessing_num_workers, remove_columns=[col for col in column_names if col != image_column], load_from_cache_file=not data_args.overwrite_cache, desc="Running tokenizer on validation dataset", ) # Transform images on the fly as doing it on the whole dataset takes too much time. eval_dataset.set_transform(transform_images) # 8. Initalize our trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, data_collator=collate_fn, ) # Training last_checkpoint = None if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() #training_args # +do_eval # 10. Evaluation if training_args.do_eval: metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics)