# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from pathlib import Path import torch from torchvision import transforms from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee import register from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor from train_clip_with_hf_trainer import train_with_hf_trainer @register(output_schema=['vec']) class Clip(NNOperator): """ CLIP multi-modal embedding operator """ def __init__(self, model_name: str, modality: str): self.modality = modality self.device = "cuda" if torch.cuda.is_available() else "cpu" cfg = self._configs()[model_name] self.model = CLIPModel.from_pretrained(cfg) self.tokenizer = CLIPTokenizer.from_pretrained(cfg) self.processor = CLIPProcessor.from_pretrained(cfg) def inference_single_data(self, data): if self.modality == 'image': vec = self._inference_from_image(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec.detach().cpu().numpy().flatten() def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results def _inference_from_text(self, text): tokens = self.tokenizer([text], padding=True, return_tensors="pt") text_features = self.model.get_text_features(**tokens) return text_features @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = to_pil(img) inputs = processor(images=img, return_tensors="pt") image_features = self.model.get_image_features(**inputs) return image_features def train(self, **kwargs): data_args = kwargs.pop('data_args', None) training_args = kwargs.pop('training_args', None) train_with_hf_trainer(self.model, self.tokenizer, data_args, training_args) def _configs(self): config = {} config['clip_vit_base_32'] = 'openai/clip-vit-base-patch16' config['clip_vit_base_16'] = 'openai/clip-vit-base-patch32' config['clip_vit_large_14'] = 'openai/clip-vit-large-patch14' config['clip_vit_large_14_336'] ='openai/clip-vit-large-patch14-336' return config