# Image-Text Retrieval Embdding with CLIP *author: David Wang*
## Description This operator extracts features for image or text with [CLIP](https://arxiv.org/abs/2103.00020) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.
## Code Example Load an image from path './teddy.jpg' to generate an image embedding. Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee import pipe, ops, DataCollection img_pipe = ( pipe.input('url') .map('url', 'img', ops.image_decode.cv2_rgb()) .map('img', 'vec', ops.image_text_embedding.clip(model_name='clip_vit_base_patch16', modality='image')) .output('img', 'vec') ) text_pipe = ( pipe.input('text') .map('text', 'vec', ops.image_text_embedding.clip(model_name='clip_vit_base_patch16', modality='text')) .output('text', 'vec') ) DataCollection(img_pipe('./teddy.jpg')).show() DataCollection(text_pipe('A teddybear on a skateboard in Times Square.')).show() ``` result1 result2
## Factory Constructor Create the operator via the following factory method ***clip(model_name, modality)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of CLIP. Supported model names: - clip_vit_base_patch16 - clip_vit_base_patch32 - clip_vit_large_patch14 - clip_vit_large_patch14_336 ​ ***modality:*** *str* ​ Which modality(*image* or *text*) is used to generate the embedding.
***checkpoint_path***: *str* The path to local checkpoint, defaults to None. If None, the operator will download and load pretrained model by `model_name` from Huggingface transformers. ## Interface An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. ***save_model(format='pytorch', path='default')*** Save model to local with specified format. **Parameters:** ***format***: *str* ​ The format of saved model, defaults to 'pytorch'. ***path***: *str* ​ The path where model is saved to. By default, it will save model to the operator directory. ```python from towhee import ops op = ops.image_text_embedding.clip(model_name='clip_vit_base_patch16', modality='image').get_op() op.save_model('onnx', 'test.onnx') ```
**Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data (image or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model. ***supported_model_names(format=None)*** Get a list of all supported model names or supported model names for specified model format. **Parameters:** ***format***: *str* ​ The model format such as 'pytorch', 'torchscript'. ```python from towhee import ops op = ops.image_text_embedding.clip(model_name='clip_vit_base_patch16', modality='image').get_op() full_list = op.supported_model_names() onnx_list = op.supported_model_names(format='onnx') print(f'Onnx-support/Total Models: {len(onnx_list)}/{len(full_list)}') ```
## Fine-tune ### Requirement If you want to train this operator, besides dependency in requirements.txt, you need install these dependencies. There is also an [example](https://github.com/towhee-io/examples/blob/main/image/text_image_search/2_deep_dive_text_image_search.ipynb) to show how to finetune it on a custom dataset. ```python ! python -m pip install datasets evaluate ``` ### Get start ```python import towhee clip_op = towhee.ops.image_text_embedding.clip(model_name='clip_vit_base_patch16', modality='image').get_op() data_args = { 'dataset_name': 'ydshieh/coco_dataset_script', 'dataset_config_name': '2017', 'max_seq_length': 77, 'data_dir': path_to_your_coco_dataset, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711] } training_args = { 'num_train_epochs': 3, # you can add epoch number to get a better metric. 'per_device_train_batch_size': 8, 'per_device_eval_batch_size': 8, 'do_train': True, 'do_eval': True, 'remove_unused_columns': False, 'output_dir': './tmp/test-clip', 'overwrite_output_dir': True, } model_args = { 'freeze_vision_model': False, 'freeze_text_model': False, 'cache_dir': './cache' } clip_op.train(data_args=data_args, training_args=training_args, model_args=model_args) ``` ### Dive deep and customize your training You can change the [training script](https://towhee.io/image-text-embedding/clip/src/branch/main/train_clip_with_hf_trainer.py) in your customer way. Or your can refer to the original [hugging face transformers training examples](https://github.com/huggingface/transformers/tree/main/examples/pytorch/contrastive-image-text). # More Resources - [CLIP Object Detection: Merging AI Vision with Language Understanding - Zilliz blog](https://zilliz.com/learn/CLIP-object-detection-merge-AI-vision-with-language-understanding): CLIP Object Detection combines CLIP's text-image understanding with object detection tasks, allowing CLIP to locate and identify objects in images using texts. - [Supercharged Semantic Similarity Search in Production - Zilliz blog](https://zilliz.com/learn/supercharged-semantic-similarity-search-in-production): Building a Blazing Fast, Highly Scalable Text-to-Image Search with CLIP embeddings and Milvus, the most advanced open-source vector database. - [The guide to clip-vit-base-patch32 | OpenAI](https://zilliz.com/ai-models/clip-vit-base-patch32): clip-vit-base-patch32: a CLIP multimodal model variant by OpenAI for image and text embedding. - [Image Embeddings for Enhanced Image Search - Zilliz blog](https://zilliz.com/learn/image-embeddings-for-enhanced-image-search): Image Embeddings are the core of modern computer vision algorithms. Understand their implementation and use cases and explore different image embedding models. - [From Text to Image: Fundamentals of CLIP - Zilliz blog](https://zilliz.com/blog/fundamentals-of-clip): Search algorithms rely on semantic similarity to retrieve the most relevant results. With the CLIP model, the semantics of texts and images can be connected in a high-dimensional vector space. Read this simple introduction to see how CLIP can help you build a powerful text-to-image service.