# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import os from pathlib import Path import torch from torch import nn from torchvision import transforms import logging import warnings from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee import register from transformers import CLIPTokenizer, CLIPTextModel ,CLIPModel,CLIPProcessor from transformers import logging as t_logging # from towhee.dc2 import accelerate log = logging.getLogger('run_op') warnings.filterwarnings('ignore') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' t_logging.set_verbosity_error() def create_model(model_name, modality, checkpoint_path, device): hf_clip_model = CLIPModel.from_pretrained(model_name) if checkpoint_path: try: state_dict = torch.load(checkpoint_path, map_location=device) hf_clip_model.load_state_dict(state_dict) except Exception as e: log.error(f"Fail to load state dict from {checkpoint_path}: {e}") hf_clip_model.to(device) hf_clip_model.eval() if modality == 'image': clip = CLIPModelVision(hf_clip_model) elif modality == 'text': clip = CLIPModelText(hf_clip_model) else: raise ValueError("modality[{}] not implemented.".format(modality)) return clip class CLIPModelVision(nn.Module): def __init__(self, model): super().__init__() self.backbone = model def forward(self, pixel_values): image_embeds = self.backbone.get_image_features(pixel_values) return image_embeds class CLIPModelText(nn.Module): def __init__(self, model): super().__init__() self.backbone = model def forward(self, input_ids, attention_mask): text_embeds = self.backbone.get_text_features(input_ids, attention_mask) return text_embeds # @accelerate class Model: def __init__(self, model_name, modality, checkpoint_path, device): self.model = create_model(model_name, modality, checkpoint_path, device) self.device = device def __call__(self, *args, **kwargs): new_args = [] for item in args: new_args.append(item.to(self.device)) new_kwargs = {} for k, value in kwargs.items(): new_kwargs[k] = value.to(self.device) outs = self.model(*new_args, **new_kwargs) return outs @register(output_schema=['vec']) class Clip(NNOperator): """ CLIP multi-modal embedding operator """ def __init__(self, model_name: str, modality: str, device: str = 'cpu', checkpoint_path: str = None): self.model_name = model_name self.modality = modality self.device = device self.checkpoint_path = checkpoint_path real_name = self._configs()[model_name] self.model = Model(real_name, modality, checkpoint_path, device) self.tokenizer = CLIPTokenizer.from_pretrained(real_name) self.processor = CLIPProcessor.from_pretrained(real_name) def inference_single_data(self, data): if self.modality == 'image': vec = self._inference_from_image(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self.modality)) return vec.detach().cpu().numpy().flatten() def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results def _inference_from_text(self, text): tokens = self.tokenizer([text], padding=True, return_tensors="pt") text_features = self.model(tokens['input_ids'], tokens['attention_mask']) return text_features @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = to_pil(img) inputs = self.processor(images=img, return_tensors="pt") image_features = self.model(inputs['pixel_values']) return image_features def train(self, **kwargs): import sys import pathlib path = str(pathlib.Path(__file__).parent) print(path) sys.path.append(path) from train_clip_with_hf_trainer import train_with_hf_trainer data_args = kwargs.pop('data_args', None) training_args = kwargs.pop('training_args', None) model_args = kwargs.pop('model_args', None) train_with_hf_trainer(self._model.backbone, self.tokenizer, data_args, training_args, model_args) def _configs(self): config = {} config['clip_vit_base_patch16'] = 'openai/clip-vit-base-patch16' config['clip_vit_base_patch32'] = 'openai/clip-vit-base-patch32' config['clip_vit_large_patch14'] = 'openai/clip-vit-large-patch14' config['clip_vit_large_patch14_336'] ='openai/clip-vit-large-patch14-336' return config @property def supported_formats(self): onnxes = self.supported_model_names(format='onnx') if self.model_name in onnxes: return ['onnx'] else: return ['pytorch'] @staticmethod def supported_model_names(format: str = None): full_list = [ 'clip_vit_base_patch16', 'clip_vit_base_patch32', 'clip_vit_large_patch14', 'clip_vit_large_patch14_336' ] if format == None: model_list = full_list elif format == 'pytorch' or format == 'torchscript' or format == 'onnx': model_list = full_list else: log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".') return model_list @property def _model(self): return self.model.model def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'): import os from PIL import Image from torch.onnx import export as onnx_export if output_file == 'default': output_file = str(Path(__file__).parent) output_file = os.path.join(output_file, 'saved', model_type) os.makedirs(output_file, exist_ok=True) name = self.model_name.replace('/', '-') output_file = os.path.join(output_file, name) if model_type in ['pytorch', 'torchscript']: output_file = output_file + '.pt' elif model_type == 'onnx': output_file = output_file + '.onnx' else: raise AttributeError('Unsupported model_type.') if self.modality == 'image': sz = self.processor.feature_extractor.crop_size if isinstance(sz, int): h = sz w = sz elif isinstance(sz, dict): h = sz['height'] w = sz['width'] dummy_input = Image.new('RGB', (w, h), color = 'red') inputs = self.processor(images=dummy_input, return_tensors='pt').to(self.device) # a dictionary elif self.modality == 'text': dummy_input = 'dummy' inputs = self.tokenizer(dummy_input, padding=True, truncation=True, return_tensors='pt').to(self.device) # a dictionary else: raise ValueError("modality[{}] not implemented.".format(self.modality)) if model_type == 'pytorch': torch.save(self._model, output_file) elif model_type == 'torchscript': inputs = list(inputs.values()) try: try: jit_model = torch.jit.script(self._model) except Exception: jit_model = torch.jit.trace(self._model, inputs, strict=False) torch.jit.save(jit_model, output_file) except Exception as e: log.error(f'Fail to save as torchscript: {e}.') raise RuntimeError(f'Fail to save as torchscript: {e}.') elif model_type == 'onnx': if self.modality == 'image': input_names= ['pixel_values'] output_names=['image_embeds'] dynamic_axes={'pixel_values': {0: 'batch'}, 'image_embeds': {0: 'batch'}} elif self.modality == 'text': input_names= ['input_ids', 'attention_mask'] output_names=['text_embeds'] dynamic_axes={'input_ids': {0: 'batch', 1: 'sequence'}, 'attention_mask': {0: 'batch', 1: 'sequence'}, 'text_embeds': {0: 'batch'}} else: raise ValueError("modality[{}] not implemented.".format(self.modality)) onnx_export(self._model, (dict(inputs),), f=Path(output_file), input_names= input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, opset_version=14, ) else: raise NotImplementedError