japanese-clip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
220 lines
8.1 KiB
220 lines
8.1 KiB
2 years ago
|
# coding=utf-8
|
||
|
# Copyright 2022 rinna Co., Ltd.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
""" CLIP model configuration"""
|
||
|
import logging
|
||
|
import copy
|
||
|
import os
|
||
|
from typing import Union
|
||
|
|
||
|
import numpy as np
|
||
|
from transformers import AutoConfig, PretrainedConfig
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
class CLIPTextConfig(PretrainedConfig):
|
||
|
model_type = "clip_text_model"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
vocab_size=49408,
|
||
|
hidden_size=512,
|
||
|
intermediate_size=2048,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=8,
|
||
|
max_position_embeddings=77,
|
||
|
hidden_act="quick_gelu",
|
||
|
layer_norm_eps=0.00001,
|
||
|
dropout=0.0,
|
||
|
attention_dropout=0.0,
|
||
|
initializer_range=0.02,
|
||
|
initializer_factor=1.0,
|
||
|
pad_token_id=1,
|
||
|
bos_token_id=0,
|
||
|
eos_token_id=2,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
||
|
|
||
|
self.vocab_size = vocab_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.dropout = dropout
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.max_position_embeddings = max_position_embeddings
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
self.initializer_range = initializer_range
|
||
|
self.initializer_factor = initializer_factor
|
||
|
self.attention_dropout = attention_dropout
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the text config dict if we are loading from CLIPConfig
|
||
|
if config_dict.get("model_type") == "clip":
|
||
|
config_dict = config_dict["text_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class CLIPVisionConfig(PretrainedConfig):
|
||
|
model_type = "clip_vision_model"
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
hidden_size=768,
|
||
|
intermediate_size=3072,
|
||
|
num_hidden_layers=12,
|
||
|
num_attention_heads=12,
|
||
|
image_size=224,
|
||
|
patch_size=32,
|
||
|
hidden_act="quick_gelu",
|
||
|
layer_norm_eps=0.00001,
|
||
|
dropout=0.0,
|
||
|
attention_dropout=0.0,
|
||
|
initializer_range=0.02,
|
||
|
initializer_factor=1.0,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
self.hidden_size = hidden_size
|
||
|
self.intermediate_size = intermediate_size
|
||
|
self.dropout = dropout
|
||
|
self.num_hidden_layers = num_hidden_layers
|
||
|
self.num_attention_heads = num_attention_heads
|
||
|
self.patch_size = patch_size
|
||
|
self.image_size = image_size
|
||
|
self.initializer_range = initializer_range
|
||
|
self.initializer_factor = initializer_factor
|
||
|
self.attention_dropout = attention_dropout
|
||
|
self.layer_norm_eps = layer_norm_eps
|
||
|
self.hidden_act = hidden_act
|
||
|
|
||
|
@classmethod
|
||
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
||
|
|
||
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
||
|
|
||
|
# get the vision config dict if we are loading from CLIPConfig
|
||
|
if config_dict.get("model_type") == "clip":
|
||
|
config_dict = config_dict["vision_config"]
|
||
|
|
||
|
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
||
|
logger.warning(
|
||
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
||
|
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
||
|
)
|
||
|
|
||
|
return cls.from_dict(config_dict, **kwargs)
|
||
|
|
||
|
|
||
|
class CLIPConfig(PretrainedConfig):
|
||
|
r"""
|
||
|
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
|
||
|
CLIP model according to the specified arguments, defining the text model and vision model configs.
|
||
|
|
||
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||
|
documentation from [`PretrainedConfig`] for more information.
|
||
|
|
||
|
Args:
|
||
|
text_config_dict (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`CLIPTextConfig`].
|
||
|
vision_config_dict (`dict`, *optional*):
|
||
|
Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
|
||
|
projection_dim (`int`, *optional*, defaults to 512):
|
||
|
Dimentionality of text and vision projection layers.
|
||
|
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
||
|
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
|
||
|
kwargs (*optional*):
|
||
|
Dictionary of keyword arguments.
|
||
|
"""
|
||
|
|
||
|
model_type = "clip"
|
||
|
is_composition = True
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
text_config=None,
|
||
|
vision_config=None,
|
||
|
projection_dim=512,
|
||
|
logit_scale_init_value=None,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(text_config=text_config, vision_config=vision_config, **kwargs)
|
||
|
|
||
|
if vision_config is None:
|
||
|
raise ValueError("`vision_config` can not be `None`.")
|
||
|
|
||
|
if text_config is None:
|
||
|
raise ValueError("`text_config` can not be `None`.")
|
||
|
|
||
|
vision_model_type = vision_config.pop("model_type")
|
||
|
text_model_type = text_config.pop("model_type")
|
||
|
|
||
|
if vision_model_type == "clip_vision_model":
|
||
|
self.vision_config = CLIPVisionConfig(**vision_config)
|
||
|
else:
|
||
|
self.vision_config = AutoConfig.for_model(
|
||
|
vision_model_type, **vision_config
|
||
|
)
|
||
|
|
||
|
if text_model_type == "clip_text_model":
|
||
|
self.text_config = CLIPTextConfig(**text_config)
|
||
|
else:
|
||
|
self.text_config = AutoConfig.for_model(
|
||
|
text_model_type, **text_config
|
||
|
)
|
||
|
|
||
|
self.projection_dim = projection_dim
|
||
|
self.logit_scale_init_value = logit_scale_init_value if logit_scale_init_value is not None else np.log(1 / 0.07)
|
||
|
self.initializer_factor = 1.0
|
||
|
|
||
|
@classmethod
|
||
|
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
|
||
|
r"""
|
||
|
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
|
||
|
configuration.
|
||
|
|
||
|
Returns:
|
||
|
[`CLIPConfig`]: An instance of a configuration object
|
||
|
"""
|
||
|
|
||
|
return cls(text_config_dict=text_config.to_dict(), vision_config_dict=vision_config.to_dict(), **kwargs)
|
||
|
|
||
|
def to_dict(self):
|
||
|
"""
|
||
|
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
||
|
|
||
|
Returns:
|
||
|
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
||
|
"""
|
||
|
output = copy.deepcopy(self.__dict__)
|
||
|
output["text_config"] = self.text_config.to_dict()
|
||
|
output["vision_config"] = self.vision_config.to_dict()
|
||
|
output["model_type"] = self.__class__.model_type
|
||
|
return output
|