# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from pathlib import Path import torch from towhee import register from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee.types.image_utils import from_pil, to_pil @register(output_schema=['vec']) class Jaclip(NNOperator): """ Japanese CLIP multi-modal embedding operator """ def __init__(self, model_name: str, modality: str): super().__init__() path = str(Path(__file__).parent) sys.path.append(path) import japanese_clip as ja_clip sys.path.pop() self.device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = ja_clip.load("rinna/japanese-clip-vit-b-16", cache_dir="{}/weights/japanese_clip".format(path), device=self.device) self.model = model self.tfms = preprocess self.tokenizer = ja_clip.load_tokenizer() self.ja_clip = ja_clip def __call__(self, data): if self._modality == 'image': vec = self._inference_from_image(data) elif self._modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec.detach().cpu().numpy().flatten() def _inference_from_text(self, text): encodings = ja_clip.tokenize( texts=[text], max_seq_len=77, device=self.device, tokenizer=self.tokenizer, # this is optional. if you don't pass, load tokenizer each time ) text_feature = model.get_text_features(**encodings) return text_feature @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = self._preprocess(img) caption = '' image_feature = self.model.get_image_features(image) return image_feature def _preprocess(self, img): img = to_pil(img) processed_img = self.tfms(img).unsqueeze(0).to(self.device) return processed_img def _configs(self): config = {} config['blip_base'] = {} config['blip_base']['weights'] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth' return config