logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

4.3 KiB

Japanese Image-Text Retrieval Embdding with CLIP

author: David Wang


Description

This operator extracts features for image or text with Japanese-CLIP developed by rinna Co., Ltd, which can generate embeddings for Japanese text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'スケートボードに乗っているテディベア。' to generate an text embedding.

Write a same pipeline with explicit inputs/outputs name specifications:

from towhee import pipe, ops, DataCollection

img_pipe = (
    pipe.input('url')
    .map('url', 'img', ops.image_decode.cv2_rgb())
    .map('img', 'vec', ops.image_text_embedding.japanese_clip(model_name='japanese-clip-vit-b-16', modality='image'))
    .output('img', 'vec')
)

text_pipe = (
    pipe.input('text')
    .map('text', 'vec', ops.image_text_embedding.japanese_clip(model_name='japanese-clip-vit-b-16', modality='text'))
    .output('text', 'vec')
)

DataCollection(img_pipe('./teddy.jpg')).show()
DataCollection(text_pipe('スケートボードに乗っているテディベア。')).show()
result1 result2


Factory Constructor

Create the operator via the following factory method

japanese_clip(model_name, modality)

Parameters:

model_name: str

​ The model name of Japanese CLIP. Supported model names:

  • japanese-clip-vit-b-16
  • japanese-cloob-vit-b-16

modality: str

​ Which modality(image or text) is used to generate the embedding.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

More Resources

4.3 KiB

Japanese Image-Text Retrieval Embdding with CLIP

author: David Wang


Description

This operator extracts features for image or text with Japanese-CLIP developed by rinna Co., Ltd, which can generate embeddings for Japanese text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'スケートボードに乗っているテディベア。' to generate an text embedding.

Write a same pipeline with explicit inputs/outputs name specifications:

from towhee import pipe, ops, DataCollection

img_pipe = (
    pipe.input('url')
    .map('url', 'img', ops.image_decode.cv2_rgb())
    .map('img', 'vec', ops.image_text_embedding.japanese_clip(model_name='japanese-clip-vit-b-16', modality='image'))
    .output('img', 'vec')
)

text_pipe = (
    pipe.input('text')
    .map('text', 'vec', ops.image_text_embedding.japanese_clip(model_name='japanese-clip-vit-b-16', modality='text'))
    .output('text', 'vec')
)

DataCollection(img_pipe('./teddy.jpg')).show()
DataCollection(text_pipe('スケートボードに乗っているテディベア。')).show()
result1 result2


Factory Constructor

Create the operator via the following factory method

japanese_clip(model_name, modality)

Parameters:

model_name: str

​ The model name of Japanese CLIP. Supported model names:

  • japanese-clip-vit-b-16
  • japanese-cloob-vit-b-16

modality: str

​ Which modality(image or text) is used to generate the embedding.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

More Resources