japanese-clip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
63 lines
2.1 KiB
63 lines
2.1 KiB
# coding=utf-8
|
|
# Copyright 2022 rinna Co., Ltd.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Union, List
|
|
import torch
|
|
from transformers import T5Tokenizer
|
|
|
|
|
|
def load_tokenizer():
|
|
"""
|
|
https://huggingface.co/rinna/japanese-roberta-base
|
|
"""
|
|
tokenizer = T5Tokenizer.from_pretrained("rinna/japanese-roberta-base")
|
|
tokenizer.do_lower_case = True # due to some bug of tokenizer config loading
|
|
return tokenizer
|
|
|
|
|
|
def tokenize(
|
|
texts: Union[str, List[str]],
|
|
tokenizer: T5Tokenizer = None,
|
|
max_seq_len: int = 77,
|
|
device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu",
|
|
):
|
|
"""
|
|
This is a function that have the original clip's code has.
|
|
https://github.com/openai/CLIP/blob/main/clip/clip.py#L195
|
|
"""
|
|
if isinstance(texts, str):
|
|
texts = [texts]
|
|
if tokenizer is None:
|
|
tokenizer = load_tokenizer()
|
|
inputs = tokenizer(
|
|
texts,
|
|
max_length=max_seq_len-1,
|
|
padding="max_length",
|
|
truncation=True,
|
|
add_special_tokens=False,
|
|
)
|
|
# add cls token at first place
|
|
input_ids = [[tokenizer.cls_token_id] + ids for ids in inputs['input_ids']]
|
|
attention_mask = [[1] + am for am in inputs['attention_mask']]
|
|
position_ids = [list(range(0, len(input_ids[0])))] * len(texts)
|
|
|
|
input_ids = torch.tensor(input_ids, dtype=torch.long)
|
|
attention_mask = torch.tensor(attention_mask, dtype=torch.long)
|
|
position_ids = torch.tensor(position_ids, dtype=torch.long)
|
|
return {
|
|
"input_ids": input_ids.to(device),
|
|
"attention_mask": attention_mask.to(device),
|
|
"position_ids": position_ids.to(device),
|
|
}
|