logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

139 lines
4.5 KiB

"""
A meta data loader for sampling from different datasets / training tasks
A prefetch loader to speedup data loading
"""
import random
import torch
from torch.utils.data import DataLoader
from uniter_model.utils.distributed import any_broadcast
class MetaLoader(object):
""" wraps multiple data loader """
def __init__(self, loaders, accum_steps=1, distributed=False):
assert isinstance(loaders, dict)
self.name2loader = {}
self.name2iter = {}
self.sampling_pools = []
for n, l in loaders.items():
if isinstance(l, tuple):
l, r = l
elif isinstance(l, DataLoader):
r = 1
else:
raise ValueError()
self.name2loader[n] = l
self.name2iter[n] = iter(l)
self.sampling_pools.extend([n]*r)
self.accum_steps = accum_steps
self.distributed = distributed
self.step = 0
def __iter__(self):
""" this iterator will run indefinitely """
task = self.sampling_pools[0]
while True:
if self.step % self.accum_steps == 0:
task = random.choice(self.sampling_pools)
if self.distributed:
# make sure all process is training same task
task = any_broadcast(task, 0)
self.step += 1
iter_ = self.name2iter[task]
try:
batch = next(iter_)
except StopIteration:
iter_ = iter(self.name2loader[task])
batch = next(iter_)
self.name2iter[task] = iter_
yield task, batch
def move_to_cuda(batch):
if isinstance(batch, torch.Tensor):
return batch.cuda(non_blocking=True)
elif isinstance(batch, list):
new_batch = [move_to_cuda(t) for t in batch]
elif isinstance(batch, tuple):
new_batch = tuple(move_to_cuda(t) for t in batch)
elif isinstance(batch, dict):
new_batch = {n: move_to_cuda(t) for n, t in batch.items()}
else:
return batch
return new_batch
def record_cuda_stream(batch):
if isinstance(batch, torch.Tensor):
batch.record_stream(torch.cuda.current_stream())
elif isinstance(batch, list) or isinstance(batch, tuple):
for t in batch:
record_cuda_stream(t)
elif isinstance(batch, dict):
for t in batch.values():
record_cuda_stream(t)
else:
pass
class PrefetchLoader(object):
"""
overlap compute and cuda data transfer
(copied and then modified from nvidia apex)
"""
def __init__(self, loader):
self.loader = loader
self.stream = torch.cuda.Stream()
def __iter__(self):
loader_it = iter(self.loader)
self.preload(loader_it)
batch = self.next(loader_it)
while batch is not None:
yield batch
batch = self.next(loader_it)
def __len__(self):
return len(self.loader)
def preload(self, it):
try:
self.batch = next(it)
except StopIteration:
self.batch = None
return
# if record_stream() doesn't work, another option is to make sure
# device inputs are created on the main stream.
# self.next_input_gpu = torch.empty_like(self.next_input,
# device='cuda')
# self.next_target_gpu = torch.empty_like(self.next_target,
# device='cuda')
# Need to make sure the memory allocated for next_* is not still in use
# by the main stream at the time we start copying to next_*:
# self.stream.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(self.stream):
self.batch = move_to_cuda(self.batch)
# more code for the alternative if record_stream() doesn't work:
# copy_ will record the use of the pinned source tensor in this
# side stream.
# self.next_input_gpu.copy_(self.next_input, non_blocking=True)
# self.next_target_gpu.copy_(self.next_target, non_blocking=True)
# self.next_input = self.next_input_gpu
# self.next_target = self.next_target_gpu
def next(self, it):
torch.cuda.current_stream().wait_stream(self.stream)
batch = self.batch
if batch is not None:
record_cuda_stream(batch)
self.preload(it)
return batch
def __getattr__(self, name):
method = self.loader.__getattribute__(name)
return method