lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
236 lines
9.2 KiB
236 lines
9.2 KiB
2 years ago
|
"""
|
||
|
BERT layers from the huggingface implementation
|
||
|
(https://github.com/huggingface/transformers)
|
||
|
"""
|
||
|
# coding=utf-8
|
||
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
||
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
import logging
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch import nn
|
||
|
#from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
|
||
|
|
||
|
BertLayerNorm = torch.nn.LayerNorm
|
||
|
|
||
|
|
||
|
logger = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def gelu(x):
|
||
|
"""Implementation of the gelu activation function.
|
||
|
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
||
|
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
||
|
Also see https://arxiv.org/abs/1606.08415
|
||
|
"""
|
||
|
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
||
|
|
||
|
|
||
|
def swish(x):
|
||
|
return x * torch.sigmoid(x)
|
||
|
|
||
|
|
||
|
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
||
|
|
||
|
|
||
|
class GELU(nn.Module):
|
||
|
def forward(self, input_):
|
||
|
output = gelu(input_)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class BertSelfAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertSelfAttention, self).__init__()
|
||
|
if config.hidden_size % config.num_attention_heads != 0:
|
||
|
raise ValueError(
|
||
|
"The hidden size (%d) is not a multiple of the number of attention "
|
||
|
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
||
|
self.num_attention_heads = config.num_attention_heads
|
||
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
||
|
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
||
|
|
||
|
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
||
|
|
||
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
||
|
|
||
|
def transpose_for_scores(self, x):
|
||
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
||
|
x = x.view(*new_x_shape)
|
||
|
return x.permute(0, 2, 1, 3)
|
||
|
|
||
|
def forward(self, hidden_states, attention_mask):
|
||
|
mixed_query_layer = self.query(hidden_states)
|
||
|
mixed_key_layer = self.key(hidden_states)
|
||
|
mixed_value_layer = self.value(hidden_states)
|
||
|
|
||
|
query_layer = self.transpose_for_scores(mixed_query_layer)
|
||
|
key_layer = self.transpose_for_scores(mixed_key_layer)
|
||
|
value_layer = self.transpose_for_scores(mixed_value_layer)
|
||
|
|
||
|
# Take the dot product between "query" and "key" to get the raw attention scores.
|
||
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
||
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
||
|
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
||
|
attention_scores = attention_scores + attention_mask
|
||
|
|
||
|
# Normalize the attention scores to probabilities.
|
||
|
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
||
|
|
||
|
# This is actually dropping out entire tokens to attend to, which might
|
||
|
# seem a bit unusual, but is taken from the original Transformer paper.
|
||
|
attention_probs = self.dropout(attention_probs)
|
||
|
|
||
|
context_layer = torch.matmul(attention_probs, value_layer)
|
||
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
||
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
||
|
context_layer = context_layer.view(*new_context_layer_shape)
|
||
|
return context_layer
|
||
|
|
||
|
|
||
|
class BertSelfOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertSelfOutput, self).__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states, input_tensor):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BertAttention(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertAttention, self).__init__()
|
||
|
self.self = BertSelfAttention(config)
|
||
|
self.output = BertSelfOutput(config)
|
||
|
|
||
|
def forward(self, input_tensor, attention_mask):
|
||
|
self_output = self.self(input_tensor, attention_mask)
|
||
|
attention_output = self.output(self_output, input_tensor)
|
||
|
return attention_output
|
||
|
|
||
|
|
||
|
class BertIntermediate(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertIntermediate, self).__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.intermediate_act_fn = config.hidden_act
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.intermediate_act_fn(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BertOutput(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertOutput, self).__init__()
|
||
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
||
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
||
|
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
||
|
|
||
|
def forward(self, hidden_states, input_tensor):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.dropout(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BertLayer(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertLayer, self).__init__()
|
||
|
self.attention = BertAttention(config)
|
||
|
self.intermediate = BertIntermediate(config)
|
||
|
self.output = BertOutput(config)
|
||
|
|
||
|
def forward(self, hidden_states, attention_mask):
|
||
|
attention_output = self.attention(hidden_states, attention_mask)
|
||
|
intermediate_output = self.intermediate(attention_output)
|
||
|
layer_output = self.output(intermediate_output, attention_output)
|
||
|
return layer_output
|
||
|
|
||
|
|
||
|
class BertPooler(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertPooler, self).__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
self.activation = nn.Tanh()
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
# We "pool" the model by simply taking the hidden state corresponding
|
||
|
# to the first token.
|
||
|
first_token_tensor = hidden_states[:, 0]
|
||
|
pooled_output = self.dense(first_token_tensor)
|
||
|
pooled_output = self.activation(pooled_output)
|
||
|
return pooled_output
|
||
|
|
||
|
|
||
|
class BertPredictionHeadTransform(nn.Module):
|
||
|
def __init__(self, config):
|
||
|
super(BertPredictionHeadTransform, self).__init__()
|
||
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
||
|
if isinstance(config.hidden_act, str):
|
||
|
self.transform_act_fn = ACT2FN[config.hidden_act]
|
||
|
else:
|
||
|
self.transform_act_fn = config.hidden_act
|
||
|
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=1e-12)
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.dense(hidden_states)
|
||
|
hidden_states = self.transform_act_fn(hidden_states)
|
||
|
hidden_states = self.LayerNorm(hidden_states)
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BertLMPredictionHead(nn.Module):
|
||
|
def __init__(self, config, bert_model_embedding_weights):
|
||
|
super(BertLMPredictionHead, self).__init__()
|
||
|
self.transform = BertPredictionHeadTransform(config)
|
||
|
|
||
|
# The output weights are the same as the input embeddings, but there is
|
||
|
# an output-only bias for each token.
|
||
|
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
|
||
|
bert_model_embedding_weights.size(0),
|
||
|
bias=False)
|
||
|
self.decoder.weight = bert_model_embedding_weights
|
||
|
self.bias = nn.Parameter(
|
||
|
torch.zeros(bert_model_embedding_weights.size(0)))
|
||
|
|
||
|
def forward(self, hidden_states):
|
||
|
hidden_states = self.transform(hidden_states)
|
||
|
hidden_states = self.decoder(hidden_states) + self.bias
|
||
|
return hidden_states
|
||
|
|
||
|
|
||
|
class BertOnlyMLMHead(nn.Module):
|
||
|
def __init__(self, config, bert_model_embedding_weights):
|
||
|
super(BertOnlyMLMHead, self).__init__()
|
||
|
self.predictions = BertLMPredictionHead(config,
|
||
|
bert_model_embedding_weights)
|
||
|
|
||
|
def forward(self, sequence_output):
|
||
|
prediction_scores = self.predictions(sequence_output)
|
||
|
return prediction_scores
|