lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
104 lines
4.3 KiB
104 lines
4.3 KiB
2 years ago
|
"""
|
||
|
AdamW optimizer (weight decay fix)
|
||
|
copied from hugginface
|
||
|
"""
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch.optim import Optimizer
|
||
|
|
||
|
|
||
|
class AdamW(Optimizer):
|
||
|
""" Implements Adam algorithm with weight decay fix.
|
||
|
Parameters:
|
||
|
lr (float): learning rate. Default 1e-3.
|
||
|
betas (tuple of 2 floats): Adams beta parameters (b1, b2).
|
||
|
Default: (0.9, 0.999)
|
||
|
eps (float): Adams epsilon. Default: 1e-6
|
||
|
weight_decay (float): Weight decay. Default: 0.0
|
||
|
correct_bias (bool): can be set to False to avoid correcting bias
|
||
|
in Adam (e.g. like in Bert TF repository). Default True.
|
||
|
"""
|
||
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-6,
|
||
|
weight_decay=0.0, correct_bias=True):
|
||
|
if lr < 0.0:
|
||
|
raise ValueError(
|
||
|
"Invalid learning rate: {} - should be >= 0.0".format(lr))
|
||
|
if not 0.0 <= betas[0] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter: {} - "
|
||
|
"should be in [0.0, 1.0[".format(betas[0]))
|
||
|
if not 0.0 <= betas[1] < 1.0:
|
||
|
raise ValueError("Invalid beta parameter: {} - "
|
||
|
"should be in [0.0, 1.0[".format(betas[1]))
|
||
|
if not 0.0 <= eps:
|
||
|
raise ValueError("Invalid epsilon value: {} - "
|
||
|
"should be >= 0.0".format(eps))
|
||
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
|
||
|
correct_bias=correct_bias)
|
||
|
super(AdamW, self).__init__(params, defaults)
|
||
|
|
||
|
def step(self, closure=None):
|
||
|
"""Performs a single optimization step.
|
||
|
Arguments:
|
||
|
closure (callable, optional): A closure that reevaluates the model
|
||
|
and returns the loss.
|
||
|
"""
|
||
|
loss = None
|
||
|
if closure is not None:
|
||
|
loss = closure()
|
||
|
|
||
|
for group in self.param_groups:
|
||
|
for p in group['params']:
|
||
|
if p.grad is None:
|
||
|
continue
|
||
|
grad = p.grad.data
|
||
|
if grad.is_sparse:
|
||
|
raise RuntimeError(
|
||
|
'Adam does not support sparse '
|
||
|
'gradients, please consider SparseAdam instead')
|
||
|
|
||
|
state = self.state[p]
|
||
|
|
||
|
# State initialization
|
||
|
if len(state) == 0:
|
||
|
state['step'] = 0
|
||
|
# Exponential moving average of gradient values
|
||
|
state['exp_avg'] = torch.zeros_like(p.data)
|
||
|
# Exponential moving average of squared gradient values
|
||
|
state['exp_avg_sq'] = torch.zeros_like(p.data)
|
||
|
|
||
|
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
|
||
|
beta1, beta2 = group['betas']
|
||
|
|
||
|
state['step'] += 1
|
||
|
|
||
|
# Decay the first and second moment running average coefficient
|
||
|
# In-place operations to update the averages at the same time
|
||
|
exp_avg.mul_(beta1).add_(1.0 - beta1, grad)
|
||
|
exp_avg_sq.mul_(beta2).addcmul_(1.0 - beta2, grad, grad)
|
||
|
denom = exp_avg_sq.sqrt().add_(group['eps'])
|
||
|
|
||
|
step_size = group['lr']
|
||
|
if group['correct_bias']: # No bias correction for Bert
|
||
|
bias_correction1 = 1.0 - beta1 ** state['step']
|
||
|
bias_correction2 = 1.0 - beta2 ** state['step']
|
||
|
step_size = (step_size * math.sqrt(bias_correction2)
|
||
|
/ bias_correction1)
|
||
|
|
||
|
p.data.addcdiv_(-step_size, exp_avg, denom)
|
||
|
|
||
|
# Just adding the square of the weights to the loss function is
|
||
|
# *not* the correct way of using L2 regularization/weight decay
|
||
|
# with Adam, since that will interact with the m and v
|
||
|
# parameters in strange ways.
|
||
|
#
|
||
|
# Instead we want to decay the weights in a manner that doesn't
|
||
|
# interact with the m/v parameters. This is equivalent to
|
||
|
# adding the square of the weights to the loss with plain
|
||
|
# (non-momentum) SGD.
|
||
|
# Add weight decay at the end (fixed version)
|
||
|
if group['weight_decay'] > 0.0:
|
||
|
p.data.add_(-group['lr'] * group['weight_decay'], p.data)
|
||
|
|
||
|
return loss
|