logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

77 lines
3.1 KiB

"""
saving utilities
"""
import json
import os
from os.path import abspath, dirname, exists, join
import subprocess
import torch
from uniter_model.utils.logger import LOGGER
def save_training_meta(args):
if args.rank > 0:
return
os.makedirs(join(args.output_dir, 'log'), exist_ok=True)
os.makedirs(join(args.output_dir, 'ckpt'), exist_ok=True)
with open(join(args.output_dir, 'log', 'hps.json'), 'w') as writer:
json.dump(vars(args), writer, indent=4)
if False:
model_config = json.load(open(args.model_config))
with open(join(args.output_dir, 'log', 'model.json'), 'w') as writer:
json.dump(model_config, writer, indent=4)
# git info
try:
LOGGER.info("Waiting on git info....")
c = subprocess.run(["git", "rev-parse", "--abbrev-ref", "HEAD"],
timeout=10, stdout=subprocess.PIPE)
git_branch_name = c.stdout.decode().strip()
LOGGER.info("Git branch: %s", git_branch_name)
c = subprocess.run(["git", "rev-parse", "HEAD"],
timeout=10, stdout=subprocess.PIPE)
git_sha = c.stdout.decode().strip()
LOGGER.info("Git SHA: %s", git_sha)
git_dir = abspath(dirname(__file__))
git_status = subprocess.check_output(
['git', 'status', '--short'],
cwd=git_dir, universal_newlines=True).strip()
with open(join(args.output_dir, 'log', 'git_info.json'),
'w') as writer:
json.dump({'branch': git_branch_name,
'is_dirty': bool(git_status),
'status': git_status,
'sha': git_sha},
writer, indent=4)
except subprocess.TimeoutExpired as e:
LOGGER.exception(e)
LOGGER.warn("Git info not found. Moving right along...")
class ModelSaver(object):
def __init__(self, output_dir, prefix='model_step', suffix='pt'):
self.output_dir = output_dir
self.prefix = prefix
self.suffix = suffix
def save(self, model, step, optimizer=None):
output_model_file = join(self.output_dir,
f"{self.prefix}_{step}.{self.suffix}")
state_dict = {k: v.cpu() if isinstance(v, torch.Tensor) else v
for k, v in model.state_dict().items()}
if hasattr(model, 'vocab_pad') and model.vocab_pad:
# store vocab embeddings before padding
emb_w = state_dict['bert.embeddings.word_embeddings.weight']
emb_w = emb_w[:-model.vocab_pad, :]
state_dict['bert.embeddings.word_embeddings.weight'] = emb_w
state_dict['cls.predictions.decoder.weight'] = emb_w
torch.save(state_dict, output_model_file)
if optimizer is not None:
dump = {'step': step, 'optimizer': optimizer.state_dict()}
if hasattr(optimizer, '_amp_stash'):
pass # TODO fp16 optimizer
torch.save(dump, f'{self.output_dir}/train_state_{step}.pt')