lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
134 lines
6.0 KiB
134 lines
6.0 KiB
2 years ago
|
"""
|
||
|
Bert for VCR model
|
||
|
"""
|
||
|
from torch import nn
|
||
|
from torch.nn import functional as F
|
||
|
from pytorch_pretrained_bert.modeling import (
|
||
|
BertOnlyMLMHead)
|
||
|
from .model import (BertForImageTextPretraining,
|
||
|
_get_image_hidden,
|
||
|
mask_img_feat,
|
||
|
RegionFeatureRegression,
|
||
|
mask_img_feat_for_mrc,
|
||
|
RegionClassification)
|
||
|
import torch
|
||
|
import random
|
||
|
|
||
|
|
||
|
class BertForImageTextPretrainingForGQA(BertForImageTextPretraining):
|
||
|
def init_type_embedding(self):
|
||
|
new_emb = nn.Embedding(3, self.bert.config.hidden_size)
|
||
|
new_emb.apply(self.init_bert_weights)
|
||
|
for i in [0, 1]:
|
||
|
emb = self.bert.embeddings.token_type_embeddings.weight.data[i, :]
|
||
|
new_emb.weight.data[i, :].copy_(emb)
|
||
|
emb = self.bert.embeddings.token_type_embeddings.weight.data[0, :]
|
||
|
new_emb.weight.data[2, :].copy_(emb)
|
||
|
self.bert.embeddings.token_type_embeddings = new_emb
|
||
|
|
||
|
def forward(self, input_ids, position_ids, txt_type_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, labels, task, compute_loss=True):
|
||
|
if task == 'mlm':
|
||
|
txt_labels = labels
|
||
|
return self.forward_mlm(input_ids, position_ids, txt_type_ids,
|
||
|
txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, txt_labels, compute_loss)
|
||
|
elif task == 'mrm':
|
||
|
img_mask = labels
|
||
|
return self.forward_mrm(input_ids, position_ids, txt_type_ids,
|
||
|
txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, img_mask, compute_loss)
|
||
|
elif task.startswith('mrc'):
|
||
|
img_mask, mrc_label_target = labels
|
||
|
return self.forward_mrc(input_ids, position_ids, txt_type_ids,
|
||
|
txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, img_mask,
|
||
|
mrc_label_target, task, compute_loss)
|
||
|
else:
|
||
|
raise ValueError('invalid task')
|
||
|
|
||
|
# MLM
|
||
|
def forward_mlm(self, input_ids, position_ids, txt_type_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, txt_labels, compute_loss=True):
|
||
|
sequence_output = self.bert(input_ids, position_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask,
|
||
|
output_all_encoded_layers=False,
|
||
|
txt_type_ids=txt_type_ids)
|
||
|
# get only the text part
|
||
|
sequence_output = sequence_output[:, :input_ids.size(1), :]
|
||
|
# only compute masked tokens for better efficiency
|
||
|
prediction_scores = self.masked_compute_scores(
|
||
|
sequence_output, txt_labels != -1)
|
||
|
if self.vocab_pad:
|
||
|
prediction_scores = prediction_scores[:, :-self.vocab_pad]
|
||
|
|
||
|
if compute_loss:
|
||
|
masked_lm_loss = F.cross_entropy(prediction_scores,
|
||
|
txt_labels[txt_labels != -1],
|
||
|
reduction='none')
|
||
|
return masked_lm_loss
|
||
|
else:
|
||
|
return prediction_scores
|
||
|
|
||
|
# MRM
|
||
|
def forward_mrm(self, input_ids, position_ids, txt_type_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, img_masks, compute_loss=True):
|
||
|
img_feat, feat_targets = mask_img_feat(img_feat, img_masks)
|
||
|
sequence_output = self.bert(input_ids, position_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask,
|
||
|
output_all_encoded_layers=False,
|
||
|
txt_type_ids=txt_type_ids)
|
||
|
# get only the text part
|
||
|
sequence_output = _get_image_hidden(sequence_output, txt_lens, num_bbs)
|
||
|
# only compute masked tokens for better efficiency
|
||
|
prediction_feat = self.masked_compute_feat(
|
||
|
sequence_output, img_masks)
|
||
|
|
||
|
if compute_loss:
|
||
|
mrm_loss = F.mse_loss(prediction_feat, feat_targets,
|
||
|
reduction='none')
|
||
|
return mrm_loss
|
||
|
else:
|
||
|
return prediction_feat
|
||
|
|
||
|
# MRC
|
||
|
def forward_mrc(self, input_ids, position_ids, txt_type_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask, img_masks,
|
||
|
label_targets, task, compute_loss=True):
|
||
|
img_feat = mask_img_feat_for_mrc(img_feat, img_masks)
|
||
|
sequence_output = self.bert(input_ids, position_ids, txt_lens,
|
||
|
img_feat, img_pos_feat, num_bbs,
|
||
|
attention_mask,
|
||
|
output_all_encoded_layers=False,
|
||
|
txt_type_ids=txt_type_ids)
|
||
|
# get only the image part
|
||
|
sequence_output = _get_image_hidden(sequence_output, txt_lens, num_bbs)
|
||
|
# only compute masked tokens for better efficiency
|
||
|
prediction_soft_label = self.masked_predict_labels(
|
||
|
sequence_output, img_masks)
|
||
|
|
||
|
if compute_loss:
|
||
|
if "kl" in task:
|
||
|
prediction_soft_label = F.log_softmax(
|
||
|
prediction_soft_label, dim=-1)
|
||
|
mrc_loss = F.kl_div(
|
||
|
prediction_soft_label, label_targets, reduction='none')
|
||
|
else:
|
||
|
label_targets = torch.max(
|
||
|
label_targets, -1)[1] # argmax
|
||
|
mrc_loss = F.cross_entropy(
|
||
|
prediction_soft_label, label_targets,
|
||
|
ignore_index=0, reduction='none')
|
||
|
return mrc_loss
|
||
|
else:
|
||
|
return prediction_soft_label
|