# Image-Text Retrieval Embdding with LightningDOT *author: David Wang*
## Description This operator extracts features for image or text with [LightningDOT](https://arxiv.org/abs/2103.08784) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.
## Code Example Load an image from path './teddy.jpg' to generate an image embedding. Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. *Write a pipeline with explicit inputs/outputs name specifications:* ```python from towhee import pipe, ops, DataCollection img_pipe = ( pipe.input('url') .map('url', 'img', ops.image_decode.cv2_rgb()) .map('img', 'vec', ops.image_text_embedding.lightningdot(model_name='lightningdot_base', modality='image')) .output('img', 'vec') ) text_pipe = ( pipe.input('text') .map('text', 'vec', ops.image_text_embedding.lightningdot(model_name='lightningdot_base', modality='text')) .output('text', 'vec') ) DataCollection(img_pipe('./teddy.jpg')).show() DataCollection(text_pipe('A teddybear on a skateboard in Times Square.')).show() ``` result1 result2
## Factory Constructor Create the operator via the following factory method ***lightningdot(model_name, modality)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of LightningDOT. Supported model names: - lightningdot_base - lightningdot_coco_ft - lightningdot_flickr_ft ​ ***modality:*** *str* ​ Which modality(*image* or *text*) is used to generate the embedding.
## Interface An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data (image or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model. # More Resources - [Sparse and Dense Embeddings - Zilliz blog](https://zilliz.com/learn/sparse-and-dense-embeddings): Learn about sparse and dense embeddings, their use cases, and a text classification example using these embeddings. - [Building A Trademark Image Search System with Milvus - Zilliz blog](https://zilliz.com/learn/image-based-trademark-similarity-search-system): Learn how to use a vector database to build your own trademark image similarity search system that could save you from intellectual property lawsuits. - [Training Your Own Text Embedding Model - Zilliz blog](https://zilliz.com/learn/training-your-own-text-embedding-model): Explore how to train your text embedding model using the `sentence-transformers` library and generate our training data by leveraging a pre-trained LLM. - [Supercharged Semantic Similarity Search in Production - Zilliz blog](https://zilliz.com/learn/supercharged-semantic-similarity-search-in-production): Building a Blazing Fast, Highly Scalable Text-to-Image Search with CLIP embeddings and Milvus, the most advanced open-source vector database. - [An LLM Powered Text to Image Prompt Generation with Milvus - Zilliz blog](https://zilliz.com/blog/llm-powered-text-to-image-prompt-generation-with-milvus): An interesting LLM project powered by the Milvus vector database for generating more efficient text-to-image prompts. - [Hybrid Search: Combining Text and Image for Enhanced Search Capabilities - Zilliz blog](https://zilliz.com/learn/hybrid-search-combining-text-and-image): Milvus enables hybrid sparse and dense vector search and multi-vector search capabilities, simplifying the vectorization and search process. - [Build a Multimodal Search System with Milvus - Zilliz blog](https://zilliz.com/blog/how-vector-dbs-are-revolutionizing-unstructured-data-search-ai-applications): Implementing a Multimodal Similarity Search System Using Milvus, Radient, ImageBind, and Meta-Chameleon-7b - [Image Embeddings for Enhanced Image Search - Zilliz blog](https://zilliz.com/learn/image-embeddings-for-enhanced-image-search): Image Embeddings are the core of modern computer vision algorithms. Understand their implementation and use cases and explore different image embedding models.