# Image-Text Retrieval Embdding with LightningDOT
*author: David Wang*
## Description
This operator extracts features for image or text with [LightningDOT](https://arxiv.org/abs/2103.08784) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.
## Code Example
Load an image from path './teddy.jpg' to generate an image embedding. 
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. 
 *Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./teddy.jpg') \
      .image_decode() \
      .image_text_embedding.lightningdot(modality='image') \
      .show()
towhee.dc(["A teddybear on a skateboard in Times Square."]) \
      .image_text_embedding.lightningdot(modality='text') \
      .show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./teddy.jpg') \
      .image_decode['path', 'img']() \
      .image_text_embedding.lightningdot['img', 'vec'](modality='image') \
      .select['img', 'vec']() \
      .show()
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
      .image_text_embedding.lightningdot['text','vec'](modality='text') \
      .select['text', 'vec']() \
      .show()
```
## Factory Constructor
Create the operator via the following factory method
***lightningdot(model_name, modality)***
**Parameters:**
   ***model_name:*** *str*
   The model name of LightningDOT. Supported model names: 
- lightningdot_base
- lightningdot_coco_ft
- lightningdot_flickr_ft     
   ***modality:*** *str*
   Which modality(*image* or *text*) is used to generate the embedding. 
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
	***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)*  or *str*
  The data (image or text based on specified modality) to generate embedding.	
**Returns:** *numpy.ndarray*
   The data embedding extracted by model.