logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

218 lines
7.8 KiB

# coding=utf-8
# copied from hugginface github
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc.
# team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT for Referring Expression Comprehension Evaluation"""
import argparse
import json
import os
from os.path import exists
from time import time
import torch
from torch.utils.data import DataLoader
# to be deprecated once upgraded to 1.2
# from torch.utils.data.distributed import DistributedSampler
from data import DistributedSampler
from apex import amp
from horovod import torch as hvd
from data import (ReImageFeatDir, ReferringExpressionEvalDataset,
re_eval_collate, PrefetchLoader)
from model import BertForReferringExpressionComprehension
from utils.logger import LOGGER
from utils.distributed import all_gather_list
from utils.misc import Struct
def main(opts):
hvd.init()
n_gpu = hvd.size()
device = torch.device("cuda", hvd.local_rank())
torch.cuda.set_device(hvd.local_rank())
rank = hvd.rank()
opts.rank = rank
LOGGER.info(f"device: {device}, n_gpu: {n_gpu}, rank: {hvd.rank()}, "
f"16-bits training: {opts.fp16}")
hps_file = f'{opts.output_dir}/log/hps.json'
model_opts = json.load(open(hps_file))
if 'mlp' not in model_opts:
model_opts['mlp'] = 1
model_opts = Struct(model_opts)
# Prepro txt_dbs
txt_dbs = opts.txt_db.split(':')
# Prepro model
if exists(opts.checkpoint):
ckpt_file = torch.load(opts.checkpoint)
else:
ckpt_file = f'{opts.output_dir}/ckpt/model_epoch_{opts.checkpoint}.pt'
checkpoint = torch.load(ckpt_file)
bert_model = json.load(open(f'{txt_dbs[0]}/meta.json'))['bert']
model = BertForReferringExpressionComprehension.from_pretrained(
bert_model, img_dim=2048, mlp=model_opts.mlp,
state_dict=checkpoint
)
if model_opts.cut_bert != -1:
# cut some layers of BERT
model.bert.encoder.layer = torch.nn.ModuleList(
model.bert.encoder.layer[:opts.cut_bert]
)
model.to(device)
if opts.fp16:
model = amp.initialize(model, enabled=opts.fp16, opt_level='O2')
# load DBs and image dirs
eval_img_dir = ReImageFeatDir(opts.img_dir)
for txt_db in txt_dbs:
print(f'Evaluating {txt_db}')
eval_dataset = ReferringExpressionEvalDataset(txt_db, eval_img_dir,
max_txt_len=-1)
eval_sampler = DistributedSampler(eval_dataset, num_replicas=n_gpu,
rank=rank, shuffle=False)
eval_dataloader = DataLoader(eval_dataset,
sampler=eval_sampler,
batch_size=opts.batch_size,
num_workers=opts.n_workers,
pin_memory=opts.pin_mem,
collate_fn=re_eval_collate)
eval_dataloader = PrefetchLoader(eval_dataloader)
# evaluate
val_log, results = validate(model, eval_dataloader)
# save
result_dir = f'{opts.output_dir}/results_test'
if not exists(result_dir) and rank == 0:
os.makedirs(result_dir)
# dummy sync
_ = None
all_gather_list(_)
db_split = txt_db.split('/')[-1].split('-')[0] # refcoco+_val_large
img_dir = opts.img_dir.split('/')[-1] # visual_grounding_coco_gt
if n_gpu > 1:
with open(f'{opts.output_dir}/results_test/'
f'results_{opts.checkpoint}_{db_split}_on_{img_dir}'
f'_rank{rank}.json',
'w') as f:
json.dump(results, f)
# dummy sync
_ = None
all_gather_list(_)
# join results
if n_gpu > 1:
results = []
for rank in range(n_gpu):
results.extend(json.load(open(
f'{opts.output_dir}/results_test/'
f'results_{opts.checkpoint}_{db_split}_on_{img_dir}'
f'_rank{rank}.json')))
if rank == 0:
with open(f'{opts.output_dir}/results_test/'
f'results_{opts.checkpoint}_{db_split}_on_{img_dir}'
f'_all.json', 'w') as f:
json.dump(results, f)
# print
print(f'{opts.output_dir}/results_test')
@torch.no_grad()
def validate(model, val_dataloader):
LOGGER.info(f"start running evaluation.")
model.eval()
tot_score = 0
n_ex = 0
st = time()
predictions = []
for i, batch in enumerate(val_dataloader):
# inputs
(*batch_inputs, tgt_box_list, obj_boxes_list, sent_ids) = batch
# scores (n, max_num_bb)
scores = model(*batch_inputs, targets=None, compute_loss=False)
ixs = torch.argmax(scores, 1).cpu().detach().numpy() # (n, )
# pred_boxes
for ix, obj_boxes, tgt_box, sent_id in \
zip(ixs, obj_boxes_list, tgt_box_list, sent_ids):
pred_box = obj_boxes[ix]
predictions.append({'sent_id': sent_id,
'pred_box': pred_box.tolist(),
'tgt_box': tgt_box.tolist()})
if (val_dataloader.loader.dataset.computeIoU(pred_box, tgt_box)
> .5):
tot_score += 1
n_ex += 1
tot_time = time()-st
tot_score = sum(all_gather_list(tot_score))
n_ex = sum(all_gather_list(n_ex))
val_acc = tot_score / n_ex
val_log = {'valid/acc': val_acc, 'valid/ex_per_s': n_ex/tot_time}
model.train()
LOGGER.info(f"validation ({n_ex} sents) finished in "
f"{int(tot_time)} seconds"
f", accuracy: {val_acc*100:.2f}%")
# summarizae
results = {'acc': val_acc, 'predictions': predictions}
return val_log, results
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Requited parameters
parser.add_argument('--txt_db',
default=None, type=str,
help="The input train corpus. (LMDB)")
parser.add_argument('--img_dir',
default=None, type=str,
help="The input train images.")
parser.add_argument('--checkpoint',
default=None, type=str,
help="pretrained model (can take 'google-bert')")
parser.add_argument('--batch_size',
default=256, type=int,
help="number of sentences per batch")
parser.add_argument('--output_dir',
default=None, type=str,
help="The output directory where the model contains "
"the model checkpoints will be written.")
# Device parameters
parser.add_argument('--fp16',
action='store_true',
help="whether to use fp-16 float precision instead of "
"32 bit")
parser.add_argument('--n_workers', type=int, default=4,
help="number of data workers")
parser.add_argument('--pin_mem', action='store_true',
help="pin memory")
args = parser.parse_args()
main(args)