lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
218 lines
7.8 KiB
218 lines
7.8 KiB
# coding=utf-8
|
|
# copied from hugginface github
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc.
|
|
# team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT for Referring Expression Comprehension Evaluation"""
|
|
import argparse
|
|
import json
|
|
import os
|
|
from os.path import exists
|
|
from time import time
|
|
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
# to be deprecated once upgraded to 1.2
|
|
# from torch.utils.data.distributed import DistributedSampler
|
|
from data import DistributedSampler
|
|
|
|
from apex import amp
|
|
from horovod import torch as hvd
|
|
|
|
from data import (ReImageFeatDir, ReferringExpressionEvalDataset,
|
|
re_eval_collate, PrefetchLoader)
|
|
from model import BertForReferringExpressionComprehension
|
|
|
|
from utils.logger import LOGGER
|
|
from utils.distributed import all_gather_list
|
|
from utils.misc import Struct
|
|
|
|
|
|
def main(opts):
|
|
|
|
hvd.init()
|
|
n_gpu = hvd.size()
|
|
device = torch.device("cuda", hvd.local_rank())
|
|
torch.cuda.set_device(hvd.local_rank())
|
|
rank = hvd.rank()
|
|
opts.rank = rank
|
|
LOGGER.info(f"device: {device}, n_gpu: {n_gpu}, rank: {hvd.rank()}, "
|
|
f"16-bits training: {opts.fp16}")
|
|
|
|
hps_file = f'{opts.output_dir}/log/hps.json'
|
|
model_opts = json.load(open(hps_file))
|
|
if 'mlp' not in model_opts:
|
|
model_opts['mlp'] = 1
|
|
model_opts = Struct(model_opts)
|
|
|
|
# Prepro txt_dbs
|
|
txt_dbs = opts.txt_db.split(':')
|
|
|
|
# Prepro model
|
|
if exists(opts.checkpoint):
|
|
ckpt_file = torch.load(opts.checkpoint)
|
|
else:
|
|
ckpt_file = f'{opts.output_dir}/ckpt/model_epoch_{opts.checkpoint}.pt'
|
|
checkpoint = torch.load(ckpt_file)
|
|
bert_model = json.load(open(f'{txt_dbs[0]}/meta.json'))['bert']
|
|
model = BertForReferringExpressionComprehension.from_pretrained(
|
|
bert_model, img_dim=2048, mlp=model_opts.mlp,
|
|
state_dict=checkpoint
|
|
)
|
|
if model_opts.cut_bert != -1:
|
|
# cut some layers of BERT
|
|
model.bert.encoder.layer = torch.nn.ModuleList(
|
|
model.bert.encoder.layer[:opts.cut_bert]
|
|
)
|
|
model.to(device)
|
|
|
|
if opts.fp16:
|
|
model = amp.initialize(model, enabled=opts.fp16, opt_level='O2')
|
|
|
|
# load DBs and image dirs
|
|
eval_img_dir = ReImageFeatDir(opts.img_dir)
|
|
for txt_db in txt_dbs:
|
|
print(f'Evaluating {txt_db}')
|
|
eval_dataset = ReferringExpressionEvalDataset(txt_db, eval_img_dir,
|
|
max_txt_len=-1)
|
|
eval_sampler = DistributedSampler(eval_dataset, num_replicas=n_gpu,
|
|
rank=rank, shuffle=False)
|
|
eval_dataloader = DataLoader(eval_dataset,
|
|
sampler=eval_sampler,
|
|
batch_size=opts.batch_size,
|
|
num_workers=opts.n_workers,
|
|
pin_memory=opts.pin_mem,
|
|
collate_fn=re_eval_collate)
|
|
eval_dataloader = PrefetchLoader(eval_dataloader)
|
|
|
|
# evaluate
|
|
val_log, results = validate(model, eval_dataloader)
|
|
|
|
# save
|
|
result_dir = f'{opts.output_dir}/results_test'
|
|
if not exists(result_dir) and rank == 0:
|
|
os.makedirs(result_dir)
|
|
|
|
# dummy sync
|
|
_ = None
|
|
all_gather_list(_)
|
|
db_split = txt_db.split('/')[-1].split('-')[0] # refcoco+_val_large
|
|
img_dir = opts.img_dir.split('/')[-1] # visual_grounding_coco_gt
|
|
if n_gpu > 1:
|
|
with open(f'{opts.output_dir}/results_test/'
|
|
f'results_{opts.checkpoint}_{db_split}_on_{img_dir}'
|
|
f'_rank{rank}.json',
|
|
'w') as f:
|
|
json.dump(results, f)
|
|
# dummy sync
|
|
_ = None
|
|
all_gather_list(_)
|
|
|
|
# join results
|
|
if n_gpu > 1:
|
|
results = []
|
|
for rank in range(n_gpu):
|
|
results.extend(json.load(open(
|
|
f'{opts.output_dir}/results_test/'
|
|
f'results_{opts.checkpoint}_{db_split}_on_{img_dir}'
|
|
f'_rank{rank}.json')))
|
|
if rank == 0:
|
|
with open(f'{opts.output_dir}/results_test/'
|
|
f'results_{opts.checkpoint}_{db_split}_on_{img_dir}'
|
|
f'_all.json', 'w') as f:
|
|
json.dump(results, f)
|
|
|
|
# print
|
|
print(f'{opts.output_dir}/results_test')
|
|
|
|
|
|
@torch.no_grad()
|
|
def validate(model, val_dataloader):
|
|
LOGGER.info(f"start running evaluation.")
|
|
model.eval()
|
|
tot_score = 0
|
|
n_ex = 0
|
|
st = time()
|
|
predictions = []
|
|
for i, batch in enumerate(val_dataloader):
|
|
# inputs
|
|
(*batch_inputs, tgt_box_list, obj_boxes_list, sent_ids) = batch
|
|
|
|
# scores (n, max_num_bb)
|
|
scores = model(*batch_inputs, targets=None, compute_loss=False)
|
|
ixs = torch.argmax(scores, 1).cpu().detach().numpy() # (n, )
|
|
|
|
# pred_boxes
|
|
for ix, obj_boxes, tgt_box, sent_id in \
|
|
zip(ixs, obj_boxes_list, tgt_box_list, sent_ids):
|
|
pred_box = obj_boxes[ix]
|
|
predictions.append({'sent_id': sent_id,
|
|
'pred_box': pred_box.tolist(),
|
|
'tgt_box': tgt_box.tolist()})
|
|
if (val_dataloader.loader.dataset.computeIoU(pred_box, tgt_box)
|
|
> .5):
|
|
tot_score += 1
|
|
n_ex += 1
|
|
|
|
tot_time = time()-st
|
|
tot_score = sum(all_gather_list(tot_score))
|
|
n_ex = sum(all_gather_list(n_ex))
|
|
val_acc = tot_score / n_ex
|
|
val_log = {'valid/acc': val_acc, 'valid/ex_per_s': n_ex/tot_time}
|
|
model.train()
|
|
LOGGER.info(f"validation ({n_ex} sents) finished in "
|
|
f"{int(tot_time)} seconds"
|
|
f", accuracy: {val_acc*100:.2f}%")
|
|
|
|
# summarizae
|
|
results = {'acc': val_acc, 'predictions': predictions}
|
|
return val_log, results
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Requited parameters
|
|
parser.add_argument('--txt_db',
|
|
default=None, type=str,
|
|
help="The input train corpus. (LMDB)")
|
|
parser.add_argument('--img_dir',
|
|
default=None, type=str,
|
|
help="The input train images.")
|
|
parser.add_argument('--checkpoint',
|
|
default=None, type=str,
|
|
help="pretrained model (can take 'google-bert')")
|
|
parser.add_argument('--batch_size',
|
|
default=256, type=int,
|
|
help="number of sentences per batch")
|
|
parser.add_argument('--output_dir',
|
|
default=None, type=str,
|
|
help="The output directory where the model contains "
|
|
"the model checkpoints will be written.")
|
|
|
|
# Device parameters
|
|
parser.add_argument('--fp16',
|
|
action='store_true',
|
|
help="whether to use fp-16 float precision instead of "
|
|
"32 bit")
|
|
parser.add_argument('--n_workers', type=int, default=4,
|
|
help="number of data workers")
|
|
parser.add_argument('--pin_mem', action='store_true',
|
|
help="pin memory")
|
|
|
|
args = parser.parse_args()
|
|
|
|
main(args)
|