lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
499 lines
21 KiB
499 lines
21 KiB
"""
|
|
Copyright (c) Microsoft Corporation.
|
|
Licensed under the MIT license.
|
|
|
|
UNITER finetuning for Image-Text Retrieval
|
|
"""
|
|
import argparse
|
|
import os
|
|
from os.path import exists, join
|
|
from time import time
|
|
|
|
import torch
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.utils.data import DataLoader, ConcatDataset
|
|
from apex import amp
|
|
from horovod import torch as hvd
|
|
from tqdm import tqdm
|
|
|
|
from data import (PrefetchLoader, TxtTokLmdb, ImageLmdbGroup,
|
|
ItmRankDatasetHardNegFromText,
|
|
ItmRankDatasetHardNegFromImage, itm_rank_hnv2_collate,
|
|
ItmValDataset, itm_val_collate,
|
|
ItmEvalDataset, itm_eval_collate)
|
|
from model import UniterForImageTextRetrievalHardNeg
|
|
from optim import get_lr_sched
|
|
from optim.misc import build_optimizer
|
|
|
|
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
|
|
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
|
|
broadcast_tensors)
|
|
from utils.save import ModelSaver, save_training_meta
|
|
from utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
|
|
from utils.const import IMG_DIM
|
|
from eval.itm import itm_eval
|
|
|
|
|
|
def build_dataloader(dataset, collate_fn, is_train, opts):
|
|
dataloader = DataLoader(dataset, batch_size=1,
|
|
shuffle=is_train, drop_last=is_train,
|
|
num_workers=opts.n_workers,
|
|
pin_memory=opts.pin_mem, collate_fn=collate_fn)
|
|
dataloader = PrefetchLoader(dataloader)
|
|
return dataloader
|
|
|
|
|
|
def main(opts):
|
|
hvd.init()
|
|
n_gpu = hvd.size()
|
|
device = torch.device("cuda", hvd.local_rank())
|
|
torch.cuda.set_device(hvd.local_rank())
|
|
rank = hvd.rank()
|
|
opts.rank = rank
|
|
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
|
|
"16-bits training: {}".format(
|
|
device, n_gpu, hvd.rank(), opts.fp16))
|
|
|
|
set_random_seed(opts.seed)
|
|
|
|
if hvd.rank() == 0:
|
|
save_training_meta(opts)
|
|
TB_LOGGER.create(join(opts.output_dir, 'log'))
|
|
pbar = tqdm(total=opts.num_train_steps)
|
|
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
|
|
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
|
|
# store ITM predictions
|
|
os.makedirs(join(opts.output_dir, 'results_val'))
|
|
os.makedirs(join(opts.output_dir, 'results_test'))
|
|
os.makedirs(join(opts.output_dir, 'results_train'))
|
|
else:
|
|
LOGGER.disabled = True
|
|
pbar = NoOp()
|
|
model_saver = NoOp()
|
|
|
|
# train_examples = None
|
|
LOGGER.info(f"Loading Train Dataset {opts.train_txt_dbs}, "
|
|
f"{opts.train_img_dbs}")
|
|
# check multiple DBs
|
|
assert len(opts.train_txt_dbs) == len(opts.train_img_dbs), \
|
|
"train txt_db and img_db have different length"
|
|
|
|
# load DBs and image dirs
|
|
all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb,
|
|
opts.num_bb, opts.compressed_db)
|
|
# train
|
|
LOGGER.info(f"Loading Train Dataset "
|
|
f"{opts.train_txt_dbs}, {opts.train_img_dbs}")
|
|
train_datasets_t = []
|
|
train_datasets_i = []
|
|
for txt_path, img_path in zip(opts.train_txt_dbs, opts.train_img_dbs):
|
|
img_db = all_img_dbs[img_path]
|
|
txt_db = TxtTokLmdb(txt_path, opts.max_txt_len)
|
|
train_datasets_t.append(
|
|
ItmRankDatasetHardNegFromText(txt_db, img_db, opts.negative_size))
|
|
train_datasets_i.append(
|
|
ItmRankDatasetHardNegFromImage(txt_db, img_db, opts.negative_size))
|
|
train_dataset_t = ConcatDataset(train_datasets_t)
|
|
train_dataset_i = ConcatDataset(train_datasets_i)
|
|
train_dataloader_t = build_dataloader(
|
|
train_dataset_t, itm_rank_hnv2_collate, True, opts)
|
|
train_dataloader_i = build_dataloader(
|
|
train_dataset_i, itm_rank_hnv2_collate, True, opts)
|
|
|
|
# val
|
|
LOGGER.info(f"Loading Val Dataset {opts.val_txt_db}, {opts.val_img_db}")
|
|
val_img_db = all_img_dbs[opts.val_img_db]
|
|
val_txt_db = TxtTokLmdb(opts.val_txt_db, -1)
|
|
val_dataset = ItmValDataset(val_txt_db, val_img_db,
|
|
opts.inf_minibatch_size)
|
|
val_dataloader = build_dataloader(val_dataset, itm_val_collate,
|
|
False, opts)
|
|
# eval
|
|
LOGGER.info(f"Loading val, test Dataset for full evaluation: "
|
|
f"{opts.val_txt_db}, {opts.val_img_db}"
|
|
f"{opts.test_txt_db}, {opts.test_img_db}")
|
|
eval_dataset_val = ItmEvalDataset(val_txt_db, val_img_db,
|
|
opts.inf_minibatch_size)
|
|
eval_loader_val = build_dataloader(eval_dataset_val, itm_eval_collate,
|
|
False, opts)
|
|
test_img_db = all_img_dbs[opts.test_img_db]
|
|
test_txt_db = TxtTokLmdb(opts.test_txt_db, -1)
|
|
eval_dataset_test = ItmEvalDataset(test_txt_db, test_img_db,
|
|
opts.inf_minibatch_size)
|
|
eval_loader_test = build_dataloader(eval_dataset_test, itm_eval_collate,
|
|
False, opts)
|
|
|
|
# Prepare model
|
|
if opts.checkpoint:
|
|
checkpoint = torch.load(opts.checkpoint)
|
|
else:
|
|
checkpoint = {}
|
|
|
|
model = UniterForImageTextRetrievalHardNeg.from_pretrained(
|
|
opts.model_config, state_dict=checkpoint,
|
|
img_dim=IMG_DIM, margin=opts.margin, hard_size=opts.hard_neg_size)
|
|
model.init_output() # pretrain ITM head is different from ranking head
|
|
model.to(device)
|
|
# make sure every process has same model parameters in the beginning
|
|
broadcast_tensors([p.data for p in model.parameters()], 0)
|
|
set_dropout(model, opts.dropout)
|
|
|
|
# Prepare optimizer
|
|
optimizer = build_optimizer(model, opts)
|
|
model, optimizer = amp.initialize(model, optimizer,
|
|
enabled=opts.fp16, opt_level='O2')
|
|
|
|
LOGGER.info(f"***** Running training on {n_gpu} GPUs *****")
|
|
LOGGER.info(" Num examples = %d",
|
|
sum(all_gather_list(len(train_dataset_t))))
|
|
LOGGER.info(" Batch size = %d", opts.train_batch_size)
|
|
LOGGER.info(" Num steps = %d", opts.num_train_steps)
|
|
|
|
running_loss = RunningMeter('loss')
|
|
model.train()
|
|
|
|
global_step = 0
|
|
step = 0
|
|
n_examples = 0
|
|
n_hard_ex = 0
|
|
n_epoch = 0
|
|
start = time()
|
|
train_iter_i = iter(train_dataloader_i)
|
|
# quick hack for amp delay_unscale bug
|
|
optimizer.zero_grad()
|
|
optimizer.step()
|
|
while True:
|
|
for batch in train_dataloader_t:
|
|
|
|
# hard text from image
|
|
try:
|
|
batch_i = next(train_iter_i)
|
|
except StopIteration:
|
|
train_iter_i = iter(train_dataloader_i)
|
|
batch_i = next(train_iter_i)
|
|
n_examples += batch_i['attn_masks'].size(0)
|
|
loss = model(batch_i, sample_from='i', compute_loss=True)
|
|
n_hard_ex += loss.numel()
|
|
loss = loss.mean() / opts.train_batch_size
|
|
with amp.scale_loss(loss, optimizer, delay_unscale=True
|
|
) as scaled_loss:
|
|
scaled_loss.backward()
|
|
|
|
# hard image from text
|
|
n_examples += batch['attn_masks'].size(0)
|
|
loss = model(batch, sample_from='t', compute_loss=True)
|
|
n_hard_ex += loss.numel()
|
|
# NOTE we use gradient accumulation to implemented train_batch_size
|
|
loss = loss.mean() / opts.train_batch_size
|
|
|
|
step += 1
|
|
delay_unscale = step % opts.train_batch_size != 0
|
|
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale
|
|
) as scaled_loss:
|
|
scaled_loss.backward()
|
|
if not delay_unscale:
|
|
# gather gradients from every processes
|
|
# do this before unscaling to make sure every process uses
|
|
# the same gradient scale
|
|
grads = [p.grad.data for p in model.parameters()
|
|
if p.requires_grad and p.grad is not None]
|
|
all_reduce_and_rescale_tensors(grads, float(1))
|
|
|
|
running_loss(loss.item())
|
|
if step % opts.train_batch_size == 0:
|
|
global_step += 1
|
|
|
|
# learning rate scheduling
|
|
lr_this_step = get_lr_sched(global_step, opts)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr_this_step
|
|
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
|
|
|
|
# log loss
|
|
losses = all_gather_list(running_loss)
|
|
running_loss = RunningMeter(
|
|
'loss', sum(l.val for l in losses)/len(losses))
|
|
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
|
|
TB_LOGGER.step()
|
|
|
|
# update model params
|
|
if opts.grad_norm != -1:
|
|
grad_norm = clip_grad_norm_(amp.master_params(optimizer),
|
|
opts.grad_norm)
|
|
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
pbar.update(1)
|
|
|
|
if global_step % 100 == 0:
|
|
# monitor training throughput
|
|
LOGGER.info(f'------------Step {global_step}-------------')
|
|
tot_ex = sum(all_gather_list(n_examples))
|
|
ex_per_sec = int(tot_ex / (time()-start))
|
|
tot_hn = sum(all_gather_list(n_hard_ex))
|
|
hn_per_sec = int(tot_hn / (time()-start))
|
|
LOGGER.info(f'{tot_ex} ({tot_hn}) examples (hard) '
|
|
f'trained at {ex_per_sec} ({hn_per_sec}) ex/s')
|
|
TB_LOGGER.add_scalar('perf/ex_per_s',
|
|
ex_per_sec, global_step)
|
|
TB_LOGGER.add_scalar('perf/hn_per_s',
|
|
hn_per_sec, global_step)
|
|
LOGGER.info(f'-------------------------------------------')
|
|
|
|
if global_step % opts.valid_steps == 0:
|
|
if opts.full_val:
|
|
LOGGER.info(
|
|
f"========================== Step {global_step} "
|
|
f"==========================")
|
|
val_log = evaluate(model, eval_loader_val)
|
|
TB_LOGGER.log_scaler_dict(
|
|
{f"valid/{k}": v for k, v in val_log.items()})
|
|
if hvd.rank() == 0:
|
|
LOGGER.info(
|
|
f"image retrieval R1: "
|
|
f"{val_log['img_r1']*100:.2f},\n"
|
|
f"image retrieval R5: "
|
|
f"{val_log['img_r5']*100:.2f},\n"
|
|
f"image retrieval R10: "
|
|
f"{val_log['img_r10']*100:.2f}\n"
|
|
f"text retrieval R1: "
|
|
f"{val_log['txt_r1']*100:.2f},\n"
|
|
f"text retrieval R5: "
|
|
f"{val_log['txt_r5']*100:.2f},\n"
|
|
f"text retrieval R10: "
|
|
f"{val_log['txt_r10']*100:.2f}")
|
|
LOGGER.info("================================="
|
|
"=================================")
|
|
else:
|
|
val_log = validate(model, val_dataloader)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, global_step)
|
|
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
n_epoch += 1
|
|
LOGGER.info(f"finished {n_epoch} epochs")
|
|
|
|
pbar.close()
|
|
# final validation
|
|
val_log = validate(model, val_dataloader)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, f'{global_step}_final')
|
|
|
|
# evaluation
|
|
for split, loader in [('val', eval_loader_val),
|
|
('test', eval_loader_test)]:
|
|
eval_log = evaluate(model, loader)
|
|
TB_LOGGER.log_scaler_dict({f"eval/{split}_{k}": v
|
|
for k, v in eval_log.items()})
|
|
if hvd.rank() != 0:
|
|
continue
|
|
LOGGER.info(
|
|
f"========================= {split} ===========================\n"
|
|
f"image retrieval R1: {eval_log['img_r1']*100:.2f},\n"
|
|
f"image retrieval R5: {eval_log['img_r5']*100:.2f},\n"
|
|
f"image retrieval R10: {eval_log['img_r10']*100:.2f}\n"
|
|
f"text retrieval R1: {eval_log['txt_r1']*100:.2f},\n"
|
|
f"text retrieval R5: {eval_log['txt_r5']*100:.2f},\n"
|
|
f"text retrieval R10: {eval_log['txt_r10']*100:.2f}")
|
|
LOGGER.info("=========================================================")
|
|
|
|
|
|
@torch.no_grad()
|
|
def validate(model, val_loader):
|
|
if hvd.rank() == 0:
|
|
pbar = tqdm(total=len(val_loader))
|
|
else:
|
|
pbar = NoOp()
|
|
LOGGER.info("start running Image Retrieval validation ...")
|
|
model.eval()
|
|
n_ex = 0
|
|
st = time()
|
|
|
|
recall_at_1, recall_at_5, recall_at_10 = 0, 0, 0
|
|
for batch in val_loader:
|
|
scores = model(batch, compute_loss=False)
|
|
_, indices = scores.squeeze(1).topk(10, dim=0)
|
|
rank = (indices == 0).nonzero()
|
|
if rank.numel():
|
|
rank = rank.item()
|
|
if rank < 1:
|
|
recall_at_1 += 1
|
|
if rank < 5:
|
|
recall_at_5 += 1
|
|
if rank < 10:
|
|
recall_at_10 += 1
|
|
n_ex += 1
|
|
pbar.update(1)
|
|
n_ex = sum(all_gather_list(n_ex))
|
|
recall_at_1 = sum(all_gather_list(recall_at_1)) / n_ex
|
|
recall_at_5 = sum(all_gather_list(recall_at_5)) / n_ex
|
|
recall_at_10 = sum(all_gather_list(recall_at_10)) / n_ex
|
|
tot_time = time()-st
|
|
val_log = {'valid/ex_per_s': n_ex/tot_time,
|
|
'valid/recall_1': recall_at_1,
|
|
'valid/recall_5': recall_at_5,
|
|
'valid/recall_10': recall_at_10}
|
|
model.train()
|
|
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
|
|
f"recall_1: {recall_at_1*100:.2f}, "
|
|
f"recall_5: {recall_at_5*100:.2f}, "
|
|
f"recall_10: {recall_at_10*100:.2f}")
|
|
pbar.close()
|
|
return val_log
|
|
|
|
|
|
@torch.no_grad()
|
|
def evaluate(model, eval_loader):
|
|
st = time()
|
|
LOGGER.info("start running Image/Text Retrieval evaluation ...")
|
|
score_matrix = inference(model, eval_loader)
|
|
dset = eval_loader.dataset
|
|
all_score = hvd.allgather(score_matrix)
|
|
all_txt_ids = [i for ids in all_gather_list(dset.ids)
|
|
for i in ids]
|
|
all_img_ids = dset.all_img_ids
|
|
assert all_score.size() == (len(all_txt_ids), len(all_img_ids))
|
|
if hvd.rank() != 0:
|
|
return {}
|
|
|
|
# NOTE: only use rank0 to compute final scores
|
|
# TODO store score_matrix and ids
|
|
eval_log = itm_eval(all_score, all_txt_ids, all_img_ids,
|
|
dset.txt2img, dset.img2txts)
|
|
|
|
tot_time = time()-st
|
|
LOGGER.info(f"evaluation finished in {int(tot_time)} seconds")
|
|
return eval_log
|
|
|
|
|
|
@torch.no_grad()
|
|
def inference(model, eval_loader):
|
|
model.eval()
|
|
if hvd.rank() == 0:
|
|
pbar = tqdm(total=len(eval_loader))
|
|
else:
|
|
pbar = NoOp()
|
|
score_matrix = torch.zeros(len(eval_loader.dataset),
|
|
len(eval_loader.dataset.all_img_ids),
|
|
device=torch.device("cuda"),
|
|
dtype=torch.float16)
|
|
for i, mini_batches in enumerate(eval_loader):
|
|
j = 0
|
|
for batch in mini_batches:
|
|
scores = model(batch, compute_loss=False)
|
|
bs = scores.size(0)
|
|
score_matrix.data[i, j:j+bs] = scores.data.squeeze(1).half()
|
|
j += bs
|
|
assert j == score_matrix.size(1)
|
|
pbar.update(1)
|
|
model.train()
|
|
pbar.close()
|
|
return score_matrix
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Required parameters
|
|
|
|
parser.add_argument('--compressed_db', action='store_true',
|
|
help='use compressed LMDB')
|
|
parser.add_argument("--checkpoint",
|
|
default=None, type=str,
|
|
help="pretrained MLM")
|
|
|
|
parser.add_argument("--output_dir", default=None, type=str,
|
|
help="The output directory where the model "
|
|
"checkpoints will be written.")
|
|
|
|
# Prepro parameters
|
|
parser.add_argument('--max_txt_len', type=int, default=60,
|
|
help='max number of tokens in text (BERT BPE)')
|
|
parser.add_argument('--conf_th', type=float, default=0.2,
|
|
help='threshold for dynamic bounding boxes '
|
|
'(-1 for fixed)')
|
|
parser.add_argument('--max_bb', type=int, default=100,
|
|
help='max number of bounding boxes')
|
|
parser.add_argument('--min_bb', type=int, default=10,
|
|
help='min number of bounding boxes')
|
|
parser.add_argument('--num_bb', type=int, default=36,
|
|
help='static number of bounding boxes')
|
|
|
|
# training parameters
|
|
parser.add_argument("--train_batch_size", default=32, type=int,
|
|
help="batch size (# positive examples) for training. "
|
|
"(implemented with gradient accumulation)")
|
|
|
|
parser.add_argument("--negative_size", default=511, type=int,
|
|
help="Number of negative samples per positive sample"
|
|
"(forward only)")
|
|
parser.add_argument("--hard_neg_size", default=31, type=int,
|
|
help="Number of hard negative samples "
|
|
"per positive sample (acutally used to train)")
|
|
|
|
parser.add_argument("--inf_minibatch_size", default=512, type=int,
|
|
help="batch size for running inference. "
|
|
"(used for validation and evaluation)")
|
|
|
|
parser.add_argument("--margin", default=0.2, type=float,
|
|
help="margin of ranking loss")
|
|
parser.add_argument("--learning_rate", default=3e-5, type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--valid_steps", default=1000, type=int,
|
|
help="Run validation every X steps")
|
|
parser.add_argument("--num_train_steps", default=100000, type=int,
|
|
help="Total number of training updates to perform.")
|
|
parser.add_argument("--optim", default='adam',
|
|
choices=['adam', 'adamax', 'adamw'],
|
|
help="optimizer")
|
|
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+',
|
|
help="beta for adam optimizer")
|
|
parser.add_argument("--decay", default='linear',
|
|
choices=['linear', 'invsqrt', 'constant'],
|
|
help="learning rate decay method")
|
|
parser.add_argument("--dropout", default=0.1, type=float,
|
|
help="tune dropout regularization")
|
|
parser.add_argument("--weight_decay", default=0.01, type=float,
|
|
help="weight decay (L2) regularization")
|
|
parser.add_argument("--grad_norm", default=0.25, type=float,
|
|
help="gradient clipping (-1 for no clipping)")
|
|
parser.add_argument("--warmup_steps", default=4000, type=int,
|
|
help="Number of training steps to perform linear "
|
|
"learning rate warmup for. (invsqrt decay)")
|
|
|
|
# device parameters
|
|
parser.add_argument('--seed', type=int, default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument('--full_val', action='store_true',
|
|
help="Always run full evaluation during training")
|
|
parser.add_argument('--fp16', action='store_true',
|
|
help="Whether to use 16-bit float precision instead "
|
|
"of 32-bit")
|
|
parser.add_argument('--n_workers', type=int, default=4,
|
|
help="number of data workers")
|
|
parser.add_argument('--pin_mem', action='store_true',
|
|
help="pin memory")
|
|
|
|
# can use config files
|
|
parser.add_argument('--config', help='JSON config files')
|
|
|
|
args = parse_with_config(parser)
|
|
|
|
if exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ValueError("Output directory ({}) already exists and is not "
|
|
"empty.".format(args.output_dir))
|
|
|
|
# options safe guard
|
|
if args.conf_th == -1:
|
|
assert args.max_bb + args.max_txt_len + 2 <= 512
|
|
else:
|
|
assert args.num_bb + args.max_txt_len + 2 <= 512
|
|
|
|
# for tensor core
|
|
assert (args.negative_size+1) % 8 == (args.hard_neg_size+1) % 8 == 0
|
|
|
|
main(args)
|