lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
604 lines
26 KiB
604 lines
26 KiB
# coding=utf-8
|
|
# copied from hugginface github
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc.
|
|
# team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT pre-training runner."""
|
|
import argparse
|
|
import json
|
|
import os
|
|
from os.path import exists, join
|
|
import random
|
|
from time import time
|
|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.optim import Adam, Adamax
|
|
from torch.utils.data import DataLoader, ConcatDataset
|
|
|
|
from apex import amp
|
|
from horovod import torch as hvd
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from data import (DistributedTokenBucketSampler,
|
|
DetectFeatLmdb, VcrDataset, VcrEvalDataset,
|
|
vcr_collate, vcr_eval_collate,
|
|
PrefetchLoader)
|
|
from model import BertForVisualCommonsenseReasoning
|
|
from optim import warmup_linear, noam_schedule, vqa_schedule, AdamW
|
|
from torch.utils.data.distributed import DistributedSampler
|
|
|
|
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
|
|
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
|
|
broadcast_tensors)
|
|
from utils.save import ModelSaver, save_training_meta
|
|
from utils.misc import NoOp, parse_with_config
|
|
NUM_SPECIAL_TOKENS = 81
|
|
|
|
|
|
def load_img_feat(dir_list, path2imgdir, opts):
|
|
dir_ = dir_list.split(";")
|
|
assert len(dir_) <= 2, "More than two img_dirs found"
|
|
img_dir_gt, img_dir = None, None
|
|
gt_dir_path, dir_path = "", ""
|
|
for d in dir_:
|
|
if "gt" in d:
|
|
gt_dir_path = d
|
|
else:
|
|
dir_path = d
|
|
if gt_dir_path != "":
|
|
img_dir_gt = path2imgdir.get(gt_dir_path, None)
|
|
if img_dir_gt is None:
|
|
img_dir_gt = DetectFeatLmdb(gt_dir_path, -1,
|
|
opts.max_bb, opts.min_bb, 100,
|
|
opts.compressed_db)
|
|
path2imgdir[gt_dir_path] = img_dir_gt
|
|
if dir_path != "":
|
|
img_dir = path2imgdir.get(dir_path, None)
|
|
if img_dir is None:
|
|
img_dir = DetectFeatLmdb(dir_path, opts.conf_th,
|
|
opts.max_bb, opts.min_bb, opts.num_bb,
|
|
opts.compressed_db)
|
|
path2imgdir[dir_path] = img_dir
|
|
return img_dir, img_dir_gt, path2imgdir
|
|
|
|
|
|
def main(opts):
|
|
hvd.init()
|
|
n_gpu = hvd.size()
|
|
device = torch.device("cuda", hvd.local_rank())
|
|
torch.cuda.set_device(hvd.local_rank())
|
|
rank = hvd.rank()
|
|
opts.rank = rank
|
|
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
|
|
"16-bits training: {}".format(
|
|
device, n_gpu, hvd.rank(), opts.fp16))
|
|
|
|
if opts.gradient_accumulation_steps < 1:
|
|
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, "
|
|
"should be >= 1".format(
|
|
opts.gradient_accumulation_steps))
|
|
|
|
random.seed(opts.seed)
|
|
np.random.seed(opts.seed)
|
|
torch.manual_seed(opts.seed)
|
|
if n_gpu > 0:
|
|
torch.cuda.manual_seed_all(opts.seed)
|
|
|
|
# train_examples = None
|
|
LOGGER.info(f"Loading Train Dataset {opts.train_txt_db}, "
|
|
f"{opts.train_img_dir}")
|
|
|
|
# load DBs and image dirs
|
|
train_txt_dbs = opts.train_txt_db.split(':')
|
|
train_img_dirs = opts.train_img_dir.split(':')
|
|
path2imgdir = {}
|
|
train_datasets = []
|
|
for db, dir_list in zip(train_txt_dbs, train_img_dirs):
|
|
img_dir, img_dir_gt, path2imgdir = load_img_feat(
|
|
dir_list, path2imgdir, opts)
|
|
train_datasets.append(VcrDataset(opts.mask_prob, db, img_dir_gt,
|
|
img_dir,
|
|
opts.max_txt_len, task="qa"))
|
|
train_datasets.append(VcrDataset(opts.mask_prob, db, img_dir_gt,
|
|
img_dir,
|
|
opts.max_txt_len, task="qar"))
|
|
train_dataset = ConcatDataset(train_datasets)
|
|
train_lens = [l for dset in train_datasets for l in dset.lens]
|
|
val_img_dir, val_img_dir_gt, path2imgdir = load_img_feat(
|
|
opts.val_img_dir, path2imgdir, opts)
|
|
val_dataset = VcrEvalDataset("val", opts.val_txt_db,
|
|
val_img_dir_gt, val_img_dir,
|
|
max_txt_len=-1)
|
|
val_final_dataset = VcrEvalDataset("test", opts.val_txt_db,
|
|
val_img_dir_gt, val_img_dir,
|
|
max_txt_len=-1)
|
|
|
|
# Prepare model
|
|
train_txt_db = train_txt_dbs[0]
|
|
emb_file = f'{train_txt_db}/embedding.pt'
|
|
|
|
if opts.checkpoint and opts.checkpoint_from == "pretrain":
|
|
if opts.checkpoint == 'google-bert':
|
|
checkpoint = None
|
|
else:
|
|
checkpoint = torch.load(opts.checkpoint)
|
|
else:
|
|
checkpoint = {}
|
|
bert_model = json.load(open(f'{train_txt_db}/meta.json'))['bert']
|
|
if 'bert' not in bert_model:
|
|
bert_model = 'bert-large-cased' # quick hack for glove exp
|
|
model = BertForVisualCommonsenseReasoning.from_pretrained(
|
|
bert_model, img_dim=2048, obj_cls=False,
|
|
state_dict=checkpoint)
|
|
model.init_type_embedding()
|
|
model.init_word_embedding(NUM_SPECIAL_TOKENS)
|
|
if opts.checkpoint_from == "vcr":
|
|
checkpoint = torch.load(opts.checkpoint)
|
|
state_dict = checkpoint.get('model_state', checkpoint)
|
|
matched_state_dict = {}
|
|
unexpected_keys = set()
|
|
missing_keys = set()
|
|
for name, param in model.named_parameters():
|
|
missing_keys.add(name)
|
|
for key, data in state_dict.items():
|
|
if key in missing_keys:
|
|
matched_state_dict[key] = data
|
|
missing_keys.remove(key)
|
|
else:
|
|
unexpected_keys.add(key)
|
|
print("Unexpected_keys:", list(unexpected_keys))
|
|
print("Missing_keys:", list(missing_keys))
|
|
model.load_state_dict(matched_state_dict, strict=False)
|
|
if opts.cut_bert != -1:
|
|
# cut some layers of BERT
|
|
model.bert.encoder.layer = torch.nn.ModuleList(
|
|
model.bert.encoder.layer[:opts.cut_bert])
|
|
if exists(emb_file) and not opts.checkpoint:
|
|
glove = torch.load(f'{train_txt_db}/embedding.pt')
|
|
vsize = glove.size(0)
|
|
hid_size = model.config.hidden_size
|
|
model.bert.embeddings.word_embeddings = torch.nn.Embedding(
|
|
vsize, hid_size)
|
|
mul_ = hid_size // 300 + 1
|
|
model.bert.embeddings.word_embeddings.weight.data = glove.repeat(
|
|
1, mul_)[:, :hid_size]
|
|
LOGGER.info('using GloVe for BERT')
|
|
del checkpoint
|
|
for name, module in model.named_modules():
|
|
# we might want to tune dropout for smaller dataset
|
|
if isinstance(module, torch.nn.Dropout):
|
|
if module.p != opts.dropout:
|
|
module.p = opts.dropout
|
|
LOGGER.info(f'{name} set to {opts.dropout}')
|
|
model.to(device)
|
|
if rank != -1:
|
|
# make sure every process has same model parameters in the beginning
|
|
broadcast_tensors([p.data for p in model.parameters()], 0)
|
|
|
|
# Prepare optimizer
|
|
param_optimizer = list(model.named_parameters())
|
|
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
|
optimizer_grouped_parameters = [
|
|
{'params': [p for n, p in param_optimizer
|
|
if not any(nd in n for nd in no_decay)],
|
|
'weight_decay': opts.weight_decay},
|
|
{'params': [p for n, p in param_optimizer
|
|
if any(nd in n for nd in no_decay)],
|
|
'weight_decay': 0.0}
|
|
]
|
|
|
|
if opts.optim == 'adam':
|
|
OptimCls = Adam
|
|
elif opts.optim == 'adamax':
|
|
OptimCls = Adamax
|
|
elif opts.optim == 'adamw':
|
|
OptimCls = AdamW
|
|
else:
|
|
raise ValueError('invalid optimizer')
|
|
optimizer = OptimCls(optimizer_grouped_parameters,
|
|
lr=opts.learning_rate, betas=opts.betas)
|
|
model, optimizer = amp.initialize(model, optimizer,
|
|
enabled=opts.fp16, opt_level='O2')
|
|
|
|
train_sampler = DistributedTokenBucketSampler(
|
|
n_gpu, rank, train_lens, bucket_size=8192,
|
|
batch_size=opts.train_batch_size, droplast=True)
|
|
val_sampler = DistributedSampler(
|
|
val_dataset, num_replicas=n_gpu, rank=rank)
|
|
val_final_sampler = DistributedSampler(
|
|
val_final_dataset, num_replicas=n_gpu, rank=rank)
|
|
train_dataloader = DataLoader(train_dataset,
|
|
batch_sampler=train_sampler,
|
|
num_workers=opts.n_workers,
|
|
pin_memory=opts.pin_mem,
|
|
collate_fn=vcr_collate)
|
|
train_dataloader = PrefetchLoader(train_dataloader)
|
|
val_dataloader = DataLoader(val_dataset,
|
|
batch_size=opts.val_batch_size*3,
|
|
sampler=val_sampler,
|
|
num_workers=opts.n_workers,
|
|
pin_memory=opts.pin_mem,
|
|
collate_fn=vcr_eval_collate)
|
|
val_final_dataloader = DataLoader(val_final_dataset,
|
|
batch_size=opts.val_batch_size,
|
|
sampler=val_final_sampler,
|
|
num_workers=opts.n_workers,
|
|
pin_memory=opts.pin_mem,
|
|
collate_fn=vcr_eval_collate)
|
|
val_dataloader = PrefetchLoader(val_dataloader)
|
|
val_final_dataloader = PrefetchLoader(val_final_dataloader)
|
|
|
|
global_step = 0
|
|
if rank == 0:
|
|
save_training_meta(opts)
|
|
TB_LOGGER.create(join(opts.output_dir, 'log'))
|
|
pbar = tqdm(total=opts.num_train_steps)
|
|
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
|
|
os.makedirs(join(opts.output_dir, 'results')) # store VQA predictions
|
|
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
|
|
else:
|
|
LOGGER.disabled = True
|
|
pbar = NoOp()
|
|
model_saver = NoOp()
|
|
|
|
LOGGER.info(f"***** Running training with {n_gpu} GPUs *****")
|
|
LOGGER.info(" Num examples = %d", len(train_dataset))
|
|
LOGGER.info(" Batch size = %d", opts.train_batch_size)
|
|
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
|
|
LOGGER.info(" Num steps = %d", opts.num_train_steps)
|
|
|
|
running_vcr_loss = RunningMeter('vcr_loss')
|
|
running_obj_loss = RunningMeter('obj_cls_loss')
|
|
running_loss = RunningMeter('loss')
|
|
model.train()
|
|
n_examples = 0
|
|
n_epoch = 0
|
|
start = time()
|
|
# quick hack for amp delay_unscale bug
|
|
optimizer.zero_grad()
|
|
optimizer.step()
|
|
while True:
|
|
for step, batch in enumerate(train_dataloader):
|
|
*_, targets = batch
|
|
n_examples += targets.size(0)
|
|
|
|
vcr_loss, obj_cls_loss = model(*batch, compute_loss=True)
|
|
# loss = loss.mean()
|
|
loss = vcr_loss + obj_cls_loss
|
|
delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0
|
|
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale
|
|
) as scaled_loss:
|
|
scaled_loss.backward()
|
|
if not delay_unscale:
|
|
# gather gradients from every processes
|
|
# do this before unscaling to make sure every process uses
|
|
# the same gradient scale
|
|
grads = [p.grad.data for p in model.parameters()
|
|
if p.requires_grad and p.grad is not None]
|
|
all_reduce_and_rescale_tensors(grads, float(1))
|
|
|
|
running_loss(loss.item())
|
|
running_vcr_loss(vcr_loss.item())
|
|
running_obj_loss(obj_cls_loss.item())
|
|
|
|
if (step + 1) % opts.gradient_accumulation_steps == 0:
|
|
global_step += 1
|
|
|
|
# learning rate scheduling
|
|
if opts.decay == 'linear':
|
|
lr_this_step = opts.learning_rate * warmup_linear(
|
|
global_step, opts.warmup_steps, opts.num_train_steps)
|
|
elif opts.decay == 'invsqrt':
|
|
lr_this_step = opts.learning_rate * noam_schedule(
|
|
global_step, opts.warmup_steps)
|
|
elif opts.decay == 'constant':
|
|
lr_this_step = opts.learning_rate
|
|
elif opts.decay == 'vqa':
|
|
lr_this_step = opts.learning_rate * vqa_schedule(
|
|
global_step, opts.warm_int, opts.decay_int,
|
|
opts.decay_st, opts.decay_rate)
|
|
if lr_this_step < 0:
|
|
# save guard for possible miscalculation of train steps
|
|
lr_this_step = 1e-8
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr_this_step
|
|
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
|
|
|
|
# log loss
|
|
losses = all_gather_list(running_loss)
|
|
running_loss = RunningMeter(
|
|
'loss', sum(l.val for l in losses)/len(losses))
|
|
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
|
|
|
|
vcr_losses = all_gather_list(running_vcr_loss)
|
|
running_vcr_loss = RunningMeter(
|
|
'vcr_loss', sum(l.val for l in vcr_losses)/len(vcr_losses))
|
|
TB_LOGGER.add_scalar('vcr_loss', running_vcr_loss.val,
|
|
global_step)
|
|
|
|
obj_losses = all_gather_list(running_obj_loss)
|
|
running_obj_loss = RunningMeter(
|
|
'obj_cls_loss',
|
|
sum(l.val for l in obj_losses)/len(obj_losses))
|
|
TB_LOGGER.add_scalar('obj_cls_loss', running_obj_loss.val,
|
|
global_step)
|
|
TB_LOGGER.step()
|
|
|
|
# update model params
|
|
if opts.grad_norm != -1:
|
|
grad_norm = clip_grad_norm_(amp.master_params(optimizer),
|
|
opts.grad_norm)
|
|
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
pbar.update(1)
|
|
|
|
if global_step % 5 == 0:
|
|
torch.cuda.empty_cache()
|
|
if global_step % 100 == 0:
|
|
# monitor training throughput
|
|
tot_ex = sum(all_gather_list(n_examples))
|
|
ex_per_sec = int(tot_ex / (time()-start))
|
|
LOGGER.info(f'{tot_ex} examples trained at '
|
|
f'{ex_per_sec} ex/s')
|
|
TB_LOGGER.add_scalar('perf/ex_per_s',
|
|
ex_per_sec, global_step)
|
|
if global_step % opts.valid_steps == 0:
|
|
val_log, results = validate(
|
|
model, val_dataloader)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, global_step)
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
n_epoch += 1
|
|
LOGGER.info(f"finished {n_epoch} epochs")
|
|
val_log, results = validate(
|
|
model, val_final_dataloader)
|
|
with open(f'{opts.output_dir}/results/'
|
|
f'results_{global_step}_'
|
|
f'rank{rank}.json', 'w') as f:
|
|
json.dump(results, f)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, f'{global_step}_final')
|
|
|
|
|
|
def compute_accuracies(out_qa, labels_qa, out_qar, labels_qar):
|
|
outputs_qa = out_qa.max(dim=-1)[1]
|
|
outputs_qar = out_qar.max(dim=-1)[1]
|
|
matched_qa = outputs_qa.squeeze() == labels_qa.squeeze()
|
|
matched_qar = outputs_qar.squeeze() == labels_qar.squeeze()
|
|
matched_joined = matched_qa & matched_qar
|
|
n_correct_qa = matched_qa.sum().item()
|
|
n_correct_qar = matched_qar.sum().item()
|
|
n_correct_joined = matched_joined.sum().item()
|
|
return n_correct_qa, n_correct_qar, n_correct_joined
|
|
|
|
|
|
@torch.no_grad()
|
|
def validate(model, val_loader):
|
|
if hvd.rank() == 0:
|
|
val_pbar = tqdm(total=len(val_loader))
|
|
else:
|
|
val_pbar = NoOp()
|
|
LOGGER.info(f"start running evaluation ...")
|
|
model.eval()
|
|
val_qa_loss, val_qar_loss = 0, 0
|
|
tot_qa_score, tot_qar_score, tot_score = 0, 0, 0
|
|
n_ex = 0
|
|
st = time()
|
|
results = {}
|
|
for i, batch in enumerate(val_loader):
|
|
qids, *inputs, qa_targets, qar_targets, _ = batch
|
|
scores = model(
|
|
*inputs, targets=None, compute_loss=False)
|
|
scores = scores.view(len(qids), -1)
|
|
vcr_qa_loss = F.cross_entropy(
|
|
scores[:, :4], qa_targets.squeeze(-1), reduction="sum")
|
|
if scores.shape[1] > 8:
|
|
qar_index = [4+answer_ind.item()*4+i for answer_ind in qa_targets
|
|
for i in range(4)]
|
|
qar_scores = scores[:, qar_index]
|
|
else:
|
|
qar_scores = scores[:, 4:]
|
|
vcr_qar_loss = F.cross_entropy(
|
|
qar_scores, qar_targets.squeeze(-1), reduction="sum")
|
|
val_qa_loss += vcr_qa_loss.item()
|
|
val_qar_loss += vcr_qar_loss.item()
|
|
curr_qa_score, curr_qar_score, curr_score = compute_accuracies(
|
|
scores[:, :4], qa_targets, qar_scores, qar_targets)
|
|
tot_qar_score += curr_qar_score
|
|
tot_qa_score += curr_qa_score
|
|
tot_score += curr_score
|
|
for qid, score in zip(qids, scores):
|
|
results[qid] = score.cpu().tolist()
|
|
n_ex += len(qids)
|
|
val_pbar.update(1)
|
|
val_qa_loss = sum(all_gather_list(val_qa_loss))
|
|
val_qar_loss = sum(all_gather_list(val_qar_loss))
|
|
tot_qa_score = sum(all_gather_list(tot_qa_score))
|
|
tot_qar_score = sum(all_gather_list(tot_qar_score))
|
|
tot_score = sum(all_gather_list(tot_score))
|
|
n_ex = sum(all_gather_list(n_ex))
|
|
tot_time = time()-st
|
|
val_qa_loss /= n_ex
|
|
val_qar_loss /= n_ex
|
|
val_qa_acc = tot_qa_score / n_ex
|
|
val_qar_acc = tot_qar_score / n_ex
|
|
val_acc = tot_score / n_ex
|
|
val_log = {f'valid/vcr_qa_loss': val_qa_loss,
|
|
f'valid/vcr_qar_loss': val_qar_loss,
|
|
f'valid/acc_qa': val_qa_acc,
|
|
f'valid/acc_qar': val_qar_acc,
|
|
f'valid/acc': val_acc,
|
|
f'valid/ex_per_s': n_ex/tot_time}
|
|
model.train()
|
|
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
|
|
f"score_qa: {val_qa_acc*100:.2f} "
|
|
f"score_qar: {val_qar_acc*100:.2f} "
|
|
f"score: {val_acc*100:.2f} ")
|
|
return val_log, results
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Required parameters
|
|
parser.add_argument("--task",
|
|
default="qa", type=str,
|
|
choices=['qa', 'qar'],
|
|
help="VCR tasks: qa or qar")
|
|
parser.add_argument("--train_txt_db",
|
|
default=None, type=str,
|
|
help="The input train corpus. (LMDB)")
|
|
parser.add_argument("--train_img_dir",
|
|
default=None, type=str,
|
|
help="The input train images.")
|
|
parser.add_argument("--val_txt_db",
|
|
default=None, type=str,
|
|
help="The input validation corpus. (LMDB)")
|
|
parser.add_argument("--val_img_dir",
|
|
default=None, type=str,
|
|
help="The input validation images.")
|
|
parser.add_argument('--img_format', default='npz',
|
|
choices=['npz', 'lmdb', 'lmdb-compress'],
|
|
help='format of image feature')
|
|
parser.add_argument("--checkpoint",
|
|
default=None, type=str,
|
|
help="pretrained model (can take 'google-bert') ")
|
|
parser.add_argument("--checkpoint_from",
|
|
default='pretrain', type=str,
|
|
choices=['pretrain', 'vcr'],
|
|
help="which setting is checkpoint from")
|
|
parser.add_argument("--cut_bert", default=-1, type=int,
|
|
help="reduce BERT layers (-1 for original depth)")
|
|
|
|
parser.add_argument(
|
|
"--output_dir", default=None, type=str,
|
|
help="The output directory where the model checkpoints will be "
|
|
"written.")
|
|
|
|
# Prepro parameters
|
|
parser.add_argument('--max_txt_len', type=int, default=60,
|
|
help='max number of tokens in text (BERT BPE)')
|
|
parser.add_argument('--conf_th', type=float, default=0.2,
|
|
help='threshold for dynamic bounding boxes '
|
|
'(-1 for fixed)')
|
|
parser.add_argument('--max_bb', type=int, default=100,
|
|
help='max number of bounding boxes')
|
|
parser.add_argument('--min_bb', type=int, default=10,
|
|
help='min number of bounding boxes')
|
|
parser.add_argument('--num_bb', type=int, default=36,
|
|
help='static number of bounding boxes')
|
|
|
|
# training parameters
|
|
parser.add_argument("--train_batch_size",
|
|
default=4096, type=int,
|
|
help="Total batch size for training. "
|
|
"(batch by tokens)")
|
|
parser.add_argument("--val_batch_size",
|
|
default=4096, type=int,
|
|
help="Total batch size for validation. "
|
|
"(batch by tokens)")
|
|
parser.add_argument('--gradient_accumulation_steps',
|
|
type=int,
|
|
default=16,
|
|
help="Number of updates steps to accumualte before "
|
|
"performing a backward/update pass.")
|
|
parser.add_argument("--learning_rate",
|
|
default=3e-5,
|
|
type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--valid_steps",
|
|
default=1000,
|
|
type=int,
|
|
help="Run validation every X steps")
|
|
parser.add_argument("--num_train_steps",
|
|
default=100000,
|
|
type=int,
|
|
help="Total number of training updates to perform.")
|
|
parser.add_argument('--mask_prob', default=0.15, type=float,
|
|
help='probability to mask in MRC training')
|
|
parser.add_argument("--optim", default='adam',
|
|
choices=['adam', 'adamax', 'adamw'],
|
|
help="optimizer")
|
|
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+',
|
|
help="beta for adam optimizer")
|
|
parser.add_argument("--decay", default='linear',
|
|
choices=['linear', 'invsqrt', 'constant', 'vqa'],
|
|
help="learning rate decay method")
|
|
parser.add_argument("--decay_int", default=2000, type=int,
|
|
help="interval between VQA lr decy")
|
|
parser.add_argument("--warm_int", default=2000, type=int,
|
|
help="interval for VQA lr warmup")
|
|
parser.add_argument("--decay_st", default=20000, type=int,
|
|
help="when to start decay")
|
|
parser.add_argument("--decay_rate", default=0.2, type=float,
|
|
help="ratio of lr decay")
|
|
parser.add_argument("--dropout",
|
|
default=0.1,
|
|
type=float,
|
|
help="tune dropout regularization")
|
|
parser.add_argument("--weight_decay",
|
|
default=0.0,
|
|
type=float,
|
|
help="weight decay (L2) regularization")
|
|
parser.add_argument("--grad_norm",
|
|
default=0.25,
|
|
type=float,
|
|
help="gradient clipping (-1 for no clipping)")
|
|
parser.add_argument("--warmup_steps",
|
|
default=4000,
|
|
type=int,
|
|
help="Number of training steps to perform linear "
|
|
"learning rate warmup for. (invsqrt decay)")
|
|
|
|
# device parameters
|
|
parser.add_argument('--seed',
|
|
type=int,
|
|
default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument('--fp16',
|
|
action='store_true',
|
|
help="Whether to use 16-bit float precision instead "
|
|
"of 32-bit")
|
|
parser.add_argument('--n_workers', type=int, default=4,
|
|
help="number of data workers")
|
|
parser.add_argument('--pin_mem', action='store_true',
|
|
help="pin memory")
|
|
|
|
# can use config files
|
|
parser.add_argument('--config', help='JSON config files')
|
|
|
|
args = parse_with_config(parser)
|
|
|
|
if exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ValueError("Output directory ({}) already exists and is not "
|
|
"empty.".format(args.output_dir))
|
|
|
|
# options safe guard
|
|
# TODO
|
|
|
|
if args.conf_th == -1:
|
|
assert args.max_bb + args.max_txt_len + 2 <= 512
|
|
else:
|
|
assert args.num_bb + args.max_txt_len + 2 <= 512
|
|
|
|
main(args)
|