lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
413 lines
17 KiB
413 lines
17 KiB
# coding=utf-8
|
|
# copied from hugginface github
|
|
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc.
|
|
# team.
|
|
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""BERT pre-training runner."""
|
|
import argparse
|
|
import json
|
|
import os
|
|
from os.path import exists, join
|
|
import pickle
|
|
from time import time
|
|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.utils.data import DataLoader
|
|
|
|
from apex import amp
|
|
from horovod import torch as hvd
|
|
|
|
from tqdm import tqdm
|
|
|
|
from data import (TokenBucketSampler, PrefetchLoader,
|
|
DetectFeatLmdb, TxtTokLmdb,
|
|
VeDataset, VeEvalDataset,
|
|
ve_collate, ve_eval_collate)
|
|
from model import UniterForVisualEntailment
|
|
from optim import get_lr_sched
|
|
from optim.misc import build_optimizer
|
|
|
|
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
|
|
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
|
|
broadcast_tensors)
|
|
from utils.save import ModelSaver, save_training_meta
|
|
from utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
|
|
from utils.misc import VE_ENT2IDX as ans2label
|
|
from utils.misc import VE_IDX2ENT as label2ans
|
|
from utils.const import IMG_DIM, BUCKET_SIZE
|
|
|
|
|
|
def create_dataloader(img_path, txt_path, batch_size, is_train,
|
|
dset_cls, collate_fn, opts):
|
|
img_db = DetectFeatLmdb(img_path, opts.conf_th, opts.max_bb, opts.min_bb,
|
|
opts.num_bb, opts.compressed_db)
|
|
txt_db = TxtTokLmdb(txt_path, opts.max_txt_len if is_train else -1)
|
|
dset = dset_cls(txt_db, img_db)
|
|
sampler = TokenBucketSampler(dset.lens, bucket_size=BUCKET_SIZE,
|
|
batch_size=batch_size, droplast=is_train)
|
|
loader = DataLoader(dset, batch_sampler=sampler,
|
|
num_workers=opts.n_workers, pin_memory=opts.pin_mem,
|
|
collate_fn=collate_fn)
|
|
return PrefetchLoader(loader)
|
|
|
|
|
|
def main(opts):
|
|
hvd.init()
|
|
n_gpu = hvd.size()
|
|
device = torch.device("cuda", hvd.local_rank())
|
|
torch.cuda.set_device(hvd.local_rank())
|
|
rank = hvd.rank()
|
|
opts.rank = rank
|
|
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
|
|
"16-bits training: {}".format(
|
|
device, n_gpu, hvd.rank(), opts.fp16))
|
|
|
|
if opts.gradient_accumulation_steps < 1:
|
|
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, "
|
|
"should be >= 1".format(
|
|
opts.gradient_accumulation_steps))
|
|
|
|
set_random_seed(opts.seed)
|
|
|
|
# train_examples = None
|
|
LOGGER.info(f"Loading Train Dataset {opts.train_txt_db}, "
|
|
f"{opts.train_img_db}")
|
|
train_dataloader = create_dataloader(opts.train_img_db, opts.train_txt_db,
|
|
opts.train_batch_size, True,
|
|
VeDataset, ve_collate, opts)
|
|
val_dataloader = create_dataloader(opts.val_img_db, opts.val_txt_db,
|
|
opts.val_batch_size, False,
|
|
VeEvalDataset, ve_eval_collate, opts)
|
|
test_dataloader = create_dataloader(opts.test_img_db, opts.test_txt_db,
|
|
opts.val_batch_size, False,
|
|
VeEvalDataset, ve_eval_collate, opts)
|
|
|
|
# Prepare model
|
|
if opts.checkpoint:
|
|
checkpoint = torch.load(opts.checkpoint)
|
|
else:
|
|
checkpoint = {}
|
|
bert_model = json.load(open(f'{opts.train_txt_db}/meta.json'))['bert']
|
|
if 'bert' not in bert_model:
|
|
bert_model = 'bert-large-cased' # quick hack for glove exp
|
|
model = UniterForVisualEntailment.from_pretrained(
|
|
opts.model_config, state_dict=checkpoint, img_dim=IMG_DIM)
|
|
model.to(device)
|
|
# make sure every process has same model parameters in the beginning
|
|
broadcast_tensors([p.data for p in model.parameters()], 0)
|
|
set_dropout(model, opts.dropout)
|
|
|
|
# Prepare optimizer
|
|
optimizer = build_optimizer(model, opts)
|
|
model, optimizer = amp.initialize(model, optimizer,
|
|
enabled=opts.fp16, opt_level='O2')
|
|
|
|
global_step = 0
|
|
if rank == 0:
|
|
save_training_meta(opts)
|
|
TB_LOGGER.create(join(opts.output_dir, 'log'))
|
|
pbar = tqdm(total=opts.num_train_steps)
|
|
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
|
|
pickle.dump(ans2label,
|
|
open(join(opts.output_dir, 'ckpt', 'ans2label.pkl'), 'wb'))
|
|
os.makedirs(join(opts.output_dir, 'results')) # store VQA predictions
|
|
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
|
|
else:
|
|
LOGGER.disabled = True
|
|
pbar = NoOp()
|
|
model_saver = NoOp()
|
|
|
|
LOGGER.info(f"***** Running training with {n_gpu} GPUs *****")
|
|
LOGGER.info(" Num examples = %d", len(train_dataloader.dataset))
|
|
LOGGER.info(" Batch size = %d", opts.train_batch_size)
|
|
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
|
|
LOGGER.info(" Num steps = %d", opts.num_train_steps)
|
|
|
|
running_loss = RunningMeter('loss')
|
|
model.train()
|
|
n_examples = 0
|
|
n_epoch = 0
|
|
start = time()
|
|
# quick hack for amp delay_unscale bug
|
|
optimizer.zero_grad()
|
|
optimizer.step()
|
|
while True:
|
|
for step, batch in enumerate(train_dataloader):
|
|
n_examples += batch['input_ids'].size(0)
|
|
|
|
loss = model(batch, compute_loss=True)
|
|
loss = loss.mean() * batch['targets'].size(1) # instance-leval bce
|
|
delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0
|
|
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale
|
|
) as scaled_loss:
|
|
scaled_loss.backward()
|
|
if not delay_unscale:
|
|
# gather gradients from every processes
|
|
# do this before unscaling to make sure every process uses
|
|
# the same gradient scale
|
|
grads = [p.grad.data for p in model.parameters()
|
|
if p.requires_grad and p.grad is not None]
|
|
all_reduce_and_rescale_tensors(grads, float(1))
|
|
|
|
running_loss(loss.item())
|
|
|
|
if (step + 1) % opts.gradient_accumulation_steps == 0:
|
|
global_step += 1
|
|
|
|
# learning rate scheduling
|
|
lr_this_step = get_lr_sched(global_step, opts)
|
|
for param_group in optimizer.param_groups:
|
|
param_group['lr'] = lr_this_step
|
|
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
|
|
|
|
# log loss
|
|
losses = all_gather_list(running_loss)
|
|
running_loss = RunningMeter(
|
|
'loss', sum(l.val for l in losses)/len(losses))
|
|
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
|
|
TB_LOGGER.step()
|
|
|
|
# update model params
|
|
if opts.grad_norm != -1:
|
|
grad_norm = clip_grad_norm_(amp.master_params(optimizer),
|
|
opts.grad_norm)
|
|
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
pbar.update(1)
|
|
|
|
if global_step % 100 == 0:
|
|
# monitor training throughput
|
|
LOGGER.info(f'============Step {global_step}=============')
|
|
tot_ex = sum(all_gather_list(n_examples))
|
|
ex_per_sec = int(tot_ex / (time()-start))
|
|
LOGGER.info(f'{tot_ex} examples trained at '
|
|
f'{ex_per_sec} ex/s')
|
|
TB_LOGGER.add_scalar('perf/ex_per_s',
|
|
ex_per_sec, global_step)
|
|
LOGGER.info(f'===========================================')
|
|
|
|
if global_step % opts.valid_steps == 0:
|
|
for split, loader in [("val", val_dataloader),
|
|
("test", test_dataloader)]:
|
|
LOGGER.info(f"Step {global_step}: start running "
|
|
f"validation on {split} split...")
|
|
val_log, results = validate(
|
|
model, loader, label2ans, split)
|
|
with open(f'{opts.output_dir}/results/'
|
|
f'{split}_results_{global_step}_'
|
|
f'rank{rank}.json', 'w') as f:
|
|
json.dump(results, f)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, global_step)
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
n_epoch += 1
|
|
LOGGER.info(f"Step {global_step}: finished {n_epoch} epochs")
|
|
for split, loader in [("val", val_dataloader),
|
|
("test", test_dataloader)]:
|
|
LOGGER.info(f"Step {global_step}: start running "
|
|
f"validation on {split} split...")
|
|
val_log, results = validate(model, loader, label2ans, split)
|
|
with open(f'{opts.output_dir}/results/'
|
|
f'{split}_results_{global_step}_'
|
|
f'rank{rank}_final.json', 'w') as f:
|
|
json.dump(results, f)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, f'{global_step}_final')
|
|
|
|
|
|
@torch.no_grad()
|
|
def validate(model, val_loader, label2ans, split='val'):
|
|
model.eval()
|
|
val_loss = 0
|
|
tot_score = 0
|
|
n_ex = 0
|
|
st = time()
|
|
results = {}
|
|
for i, batch in enumerate(val_loader):
|
|
scores = model(batch, compute_loss=False)
|
|
targets = batch['targets']
|
|
loss = F.binary_cross_entropy_with_logits(
|
|
scores, targets, reduction='sum')
|
|
val_loss += loss.item()
|
|
tot_score += compute_score_with_logits(scores, targets).sum().item()
|
|
answers = [label2ans[i]
|
|
for i in scores.max(dim=-1, keepdim=False
|
|
)[1].cpu().tolist()]
|
|
qids = batch['qids']
|
|
for qid, answer in zip(qids, answers):
|
|
results[qid] = answer
|
|
n_ex += len(qids)
|
|
val_loss = sum(all_gather_list(val_loss))
|
|
tot_score = sum(all_gather_list(tot_score))
|
|
n_ex = sum(all_gather_list(n_ex))
|
|
tot_time = time()-st
|
|
val_loss /= n_ex
|
|
val_acc = tot_score / n_ex
|
|
val_log = {f'valid/{split}_loss': val_loss,
|
|
f'valid/{split}_acc': val_acc,
|
|
f'valid/{split}_ex_per_s': n_ex/tot_time}
|
|
model.train()
|
|
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
|
|
f"score: {val_acc*100:.2f}")
|
|
return val_log, results
|
|
|
|
|
|
def compute_score_with_logits(logits, labels):
|
|
logits = torch.max(logits, 1)[1] # argmax
|
|
one_hots = torch.zeros(*labels.size(), device=labels.device)
|
|
one_hots.scatter_(1, logits.view(-1, 1), 1)
|
|
scores = (one_hots * labels)
|
|
return scores
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Required parameters
|
|
parser.add_argument("--train_txt_db",
|
|
default=None, type=str,
|
|
help="The input train corpus. (LMDB)")
|
|
parser.add_argument("--train_img_db",
|
|
default=None, type=str,
|
|
help="The input train images.")
|
|
parser.add_argument("--val_txt_db",
|
|
default=None, type=str,
|
|
help="The input validation corpus. (LMDB)")
|
|
parser.add_argument("--val_img_db",
|
|
default=None, type=str,
|
|
help="The input validation images.")
|
|
parser.add_argument("--test_txt_db",
|
|
default=None, type=str,
|
|
help="The input test corpus. (LMDB)")
|
|
parser.add_argument("--test_img_db",
|
|
default=None, type=str,
|
|
help="The input test images.")
|
|
parser.add_argument('--compressed_db', action='store_true',
|
|
help='use compressed LMDB')
|
|
parser.add_argument("--model_config",
|
|
default=None, type=str,
|
|
help="json file for model architecture")
|
|
parser.add_argument("--checkpoint",
|
|
default=None, type=str,
|
|
help="pretrained model (can take 'google-bert') ")
|
|
|
|
parser.add_argument(
|
|
"--output_dir", default=None, type=str,
|
|
help="The output directory where the model checkpoints will be "
|
|
"written.")
|
|
|
|
# Prepro parameters
|
|
parser.add_argument('--max_txt_len', type=int, default=60,
|
|
help='max number of tokens in text (BERT BPE)')
|
|
parser.add_argument('--conf_th', type=float, default=0.2,
|
|
help='threshold for dynamic bounding boxes '
|
|
'(-1 for fixed)')
|
|
parser.add_argument('--max_bb', type=int, default=100,
|
|
help='max number of bounding boxes')
|
|
parser.add_argument('--min_bb', type=int, default=10,
|
|
help='min number of bounding boxes')
|
|
parser.add_argument('--num_bb', type=int, default=36,
|
|
help='static number of bounding boxes')
|
|
|
|
# training parameters
|
|
parser.add_argument("--train_batch_size",
|
|
default=4096, type=int,
|
|
help="Total batch size for training. "
|
|
"(batch by tokens)")
|
|
parser.add_argument("--val_batch_size",
|
|
default=4096, type=int,
|
|
help="Total batch size for validation. "
|
|
"(batch by tokens)")
|
|
parser.add_argument('--gradient_accumulation_steps',
|
|
type=int,
|
|
default=16,
|
|
help="Number of updates steps to accumualte before "
|
|
"performing a backward/update pass.")
|
|
parser.add_argument("--learning_rate",
|
|
default=3e-5,
|
|
type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--valid_steps",
|
|
default=1000,
|
|
type=int,
|
|
help="Run validation every X steps")
|
|
parser.add_argument("--num_train_steps",
|
|
default=100000,
|
|
type=int,
|
|
help="Total number of training updates to perform.")
|
|
parser.add_argument("--optim", default='adam',
|
|
choices=['adam', 'adamax', 'adamw'],
|
|
help="optimizer")
|
|
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+',
|
|
help="beta for adam optimizer")
|
|
parser.add_argument("--decay", default='linear',
|
|
choices=['linear', 'invsqrt', 'constant'],
|
|
help="learning rate decay method")
|
|
parser.add_argument("--dropout",
|
|
default=0.1,
|
|
type=float,
|
|
help="tune dropout regularization")
|
|
parser.add_argument("--weight_decay",
|
|
default=0.0,
|
|
type=float,
|
|
help="weight decay (L2) regularization")
|
|
parser.add_argument("--grad_norm",
|
|
default=0.25,
|
|
type=float,
|
|
help="gradient clipping (-1 for no clipping)")
|
|
parser.add_argument("--warmup_steps",
|
|
default=4000,
|
|
type=int,
|
|
help="Number of training steps to perform linear "
|
|
"learning rate warmup for. (invsqrt decay)")
|
|
|
|
# device parameters
|
|
parser.add_argument('--seed',
|
|
type=int,
|
|
default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument('--fp16',
|
|
action='store_true',
|
|
help="Whether to use 16-bit float precision instead "
|
|
"of 32-bit")
|
|
parser.add_argument('--n_workers', type=int, default=4,
|
|
help="number of data workers")
|
|
parser.add_argument('--pin_mem', action='store_true',
|
|
help="pin memory")
|
|
|
|
# can use config files
|
|
parser.add_argument('--config', help='JSON config files')
|
|
|
|
args = parse_with_config(parser)
|
|
|
|
if exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ValueError("Output directory ({}) already exists and is not "
|
|
"empty.".format(args.output_dir))
|
|
|
|
# options safe guard
|
|
# TODO
|
|
|
|
if args.conf_th == -1:
|
|
assert args.max_bb + args.max_txt_len + 2 <= 512
|
|
else:
|
|
assert args.num_bb + args.max_txt_len + 2 <= 512
|
|
|
|
main(args)
|