lightningdot
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
415 lines
17 KiB
415 lines
17 KiB
"""
|
|
Copyright (c) Microsoft Corporation.
|
|
Licensed under the MIT license.
|
|
|
|
UNITER finetuning for VQA
|
|
"""
|
|
import argparse
|
|
import json
|
|
import os
|
|
from os.path import abspath, dirname, exists, join
|
|
from time import time
|
|
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.nn.utils import clip_grad_norm_
|
|
from torch.utils.data import DataLoader
|
|
from torch.optim import Adam, Adamax
|
|
|
|
from apex import amp
|
|
from horovod import torch as hvd
|
|
|
|
from tqdm import tqdm
|
|
|
|
from data import (TokenBucketSampler, PrefetchLoader,
|
|
TxtTokLmdb, ImageLmdbGroup, ConcatDatasetWithLens,
|
|
VqaDataset, VqaEvalDataset,
|
|
vqa_collate, vqa_eval_collate)
|
|
from model import UniterForVisualQuestionAnswering
|
|
from optim import AdamW, get_lr_sched
|
|
|
|
from utils.logger import LOGGER, TB_LOGGER, RunningMeter, add_log_to_file
|
|
from utils.distributed import (all_reduce_and_rescale_tensors, all_gather_list,
|
|
broadcast_tensors)
|
|
from utils.save import ModelSaver, save_training_meta
|
|
from utils.misc import NoOp, parse_with_config, set_dropout, set_random_seed
|
|
from utils.const import BUCKET_SIZE, IMG_DIM
|
|
|
|
|
|
def build_dataloader(dataset, collate_fn, is_train, opts):
|
|
batch_size = (opts.train_batch_size if is_train
|
|
else opts.val_batch_size)
|
|
sampler = TokenBucketSampler(dataset.lens, bucket_size=BUCKET_SIZE,
|
|
batch_size=batch_size, droplast=is_train)
|
|
dataloader = DataLoader(dataset, batch_sampler=sampler,
|
|
num_workers=opts.n_workers,
|
|
pin_memory=opts.pin_mem, collate_fn=collate_fn)
|
|
dataloader = PrefetchLoader(dataloader)
|
|
return dataloader
|
|
|
|
|
|
def build_optimizer(model, opts):
|
|
""" vqa linear may get larger learning rate """
|
|
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
|
param_optimizer = [(n, p) for n, p in model.named_parameters()
|
|
if 'vqa_output' not in n]
|
|
param_top = [(n, p) for n, p in model.named_parameters()
|
|
if 'vqa_output' in n]
|
|
optimizer_grouped_parameters = [
|
|
{'params': [p for n, p in param_top
|
|
if not any(nd in n for nd in no_decay)],
|
|
'lr': opts.learning_rate,
|
|
'weight_decay': opts.weight_decay},
|
|
{'params': [p for n, p in param_top
|
|
if any(nd in n for nd in no_decay)],
|
|
'lr': opts.learning_rate,
|
|
'weight_decay': 0.0},
|
|
{'params': [p for n, p in param_optimizer
|
|
if not any(nd in n for nd in no_decay)],
|
|
'weight_decay': opts.weight_decay},
|
|
{'params': [p for n, p in param_optimizer
|
|
if any(nd in n for nd in no_decay)],
|
|
'weight_decay': 0.0}
|
|
]
|
|
|
|
# currently Adam only
|
|
if opts.optim == 'adam':
|
|
OptimCls = Adam
|
|
elif opts.optim == 'adamax':
|
|
OptimCls = Adamax
|
|
elif opts.optim == 'adamw':
|
|
OptimCls = AdamW
|
|
else:
|
|
raise ValueError('invalid optimizer')
|
|
optimizer = OptimCls(optimizer_grouped_parameters,
|
|
lr=opts.learning_rate, betas=opts.betas)
|
|
return optimizer
|
|
|
|
|
|
def main(opts):
|
|
hvd.init()
|
|
n_gpu = hvd.size()
|
|
device = torch.device("cuda", hvd.local_rank())
|
|
torch.cuda.set_device(hvd.local_rank())
|
|
rank = hvd.rank()
|
|
opts.rank = rank
|
|
LOGGER.info("device: {} n_gpu: {}, rank: {}, "
|
|
"16-bits training: {}".format(
|
|
device, n_gpu, hvd.rank(), opts.fp16))
|
|
|
|
if opts.gradient_accumulation_steps < 1:
|
|
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, "
|
|
"should be >= 1".format(
|
|
opts.gradient_accumulation_steps))
|
|
|
|
set_random_seed(opts.seed)
|
|
|
|
ans2label = json.load(open(f'{dirname(abspath(__file__))}'
|
|
f'/misc/ans2label.json'))
|
|
label2ans = {label: ans for ans, label in ans2label.items()}
|
|
|
|
# load DBs and image dirs
|
|
all_img_dbs = ImageLmdbGroup(opts.conf_th, opts.max_bb, opts.min_bb,
|
|
opts.num_bb, opts.compressed_db)
|
|
# train
|
|
LOGGER.info(f"Loading Train Dataset "
|
|
f"{opts.train_txt_dbs}, {opts.train_img_dbs}")
|
|
train_datasets = []
|
|
for txt_path, img_path in zip(opts.train_txt_dbs, opts.train_img_dbs):
|
|
img_db = all_img_dbs[img_path]
|
|
txt_db = TxtTokLmdb(txt_path, opts.max_txt_len)
|
|
train_datasets.append(VqaDataset(len(ans2label), txt_db, img_db))
|
|
train_dataset = ConcatDatasetWithLens(train_datasets)
|
|
train_dataloader = build_dataloader(train_dataset, vqa_collate, True, opts)
|
|
# val
|
|
LOGGER.info(f"Loading Train Dataset {opts.val_txt_db}, {opts.val_img_db}")
|
|
val_img_db = all_img_dbs[opts.val_img_db]
|
|
val_txt_db = TxtTokLmdb(opts.val_txt_db, -1)
|
|
val_dataset = VqaEvalDataset(len(ans2label), val_txt_db, val_img_db)
|
|
val_dataloader = build_dataloader(val_dataset, vqa_eval_collate,
|
|
False, opts)
|
|
|
|
# Prepare model
|
|
if opts.checkpoint:
|
|
checkpoint = torch.load(opts.checkpoint)
|
|
else:
|
|
checkpoint = {}
|
|
|
|
all_dbs = opts.train_txt_dbs + [opts.val_txt_db]
|
|
toker = json.load(open(f'{all_dbs[0]}/meta.json'))['bert']
|
|
assert all(toker == json.load(open(f'{db}/meta.json'))['bert']
|
|
for db in all_dbs)
|
|
model = UniterForVisualQuestionAnswering.from_pretrained(
|
|
opts.model_config, checkpoint,
|
|
img_dim=IMG_DIM, num_answer=len(ans2label))
|
|
model.to(device)
|
|
# make sure every process has same model parameters in the beginning
|
|
broadcast_tensors([p.data for p in model.parameters()], 0)
|
|
set_dropout(model, opts.dropout)
|
|
|
|
# Prepare optimizer
|
|
optimizer = build_optimizer(model, opts)
|
|
model, optimizer = amp.initialize(model, optimizer,
|
|
enabled=opts.fp16, opt_level='O2')
|
|
global_step = 0
|
|
if rank == 0:
|
|
save_training_meta(opts)
|
|
TB_LOGGER.create(join(opts.output_dir, 'log'))
|
|
pbar = tqdm(total=opts.num_train_steps)
|
|
model_saver = ModelSaver(join(opts.output_dir, 'ckpt'))
|
|
json.dump(ans2label,
|
|
open(join(opts.output_dir, 'ckpt', 'ans2label.json'), 'w'))
|
|
os.makedirs(join(opts.output_dir, 'results')) # store VQA predictions
|
|
add_log_to_file(join(opts.output_dir, 'log', 'log.txt'))
|
|
else:
|
|
LOGGER.disabled = True
|
|
pbar = NoOp()
|
|
model_saver = NoOp()
|
|
|
|
LOGGER.info(f"***** Running training with {n_gpu} GPUs *****")
|
|
LOGGER.info(" Num examples = %d", len(train_dataset) * hvd.size())
|
|
LOGGER.info(" Batch size = %d", opts.train_batch_size)
|
|
LOGGER.info(" Accumulate steps = %d", opts.gradient_accumulation_steps)
|
|
LOGGER.info(" Num steps = %d", opts.num_train_steps)
|
|
|
|
running_loss = RunningMeter('loss')
|
|
model.train()
|
|
n_examples = 0
|
|
n_epoch = 0
|
|
start = time()
|
|
# quick hack for amp delay_unscale bug
|
|
optimizer.zero_grad()
|
|
optimizer.step()
|
|
while True:
|
|
for step, batch in enumerate(train_dataloader):
|
|
n_examples += batch['input_ids'].size(0)
|
|
|
|
loss = model(batch, compute_loss=True)
|
|
loss = loss.mean() * batch['targets'].size(1) # instance-leval bce
|
|
delay_unscale = (step+1) % opts.gradient_accumulation_steps != 0
|
|
with amp.scale_loss(loss, optimizer, delay_unscale=delay_unscale
|
|
) as scaled_loss:
|
|
scaled_loss.backward()
|
|
if not delay_unscale:
|
|
# gather gradients from every processes
|
|
# do this before unscaling to make sure every process uses
|
|
# the same gradient scale
|
|
grads = [p.grad.data for p in model.parameters()
|
|
if p.requires_grad and p.grad is not None]
|
|
all_reduce_and_rescale_tensors(grads, float(1))
|
|
|
|
running_loss(loss.item())
|
|
|
|
if (step + 1) % opts.gradient_accumulation_steps == 0:
|
|
global_step += 1
|
|
|
|
# learning rate scheduling
|
|
lr_this_step = get_lr_sched(global_step, opts)
|
|
for i, param_group in enumerate(optimizer.param_groups):
|
|
if i == 0 or i == 1:
|
|
param_group['lr'] = lr_this_step * opts.lr_mul
|
|
elif i == 2 or i == 3:
|
|
param_group['lr'] = lr_this_step
|
|
else:
|
|
raise ValueError()
|
|
TB_LOGGER.add_scalar('lr', lr_this_step, global_step)
|
|
|
|
# log loss
|
|
losses = all_gather_list(running_loss)
|
|
running_loss = RunningMeter(
|
|
'loss', sum(l.val for l in losses)/len(losses))
|
|
TB_LOGGER.add_scalar('loss', running_loss.val, global_step)
|
|
TB_LOGGER.step()
|
|
|
|
# update model params
|
|
if opts.grad_norm != -1:
|
|
grad_norm = clip_grad_norm_(amp.master_params(optimizer),
|
|
opts.grad_norm)
|
|
TB_LOGGER.add_scalar('grad_norm', grad_norm, global_step)
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
pbar.update(1)
|
|
|
|
if global_step % 100 == 0:
|
|
# monitor training throughput
|
|
LOGGER.info(f'============Step {global_step}=============')
|
|
tot_ex = sum(all_gather_list(n_examples))
|
|
ex_per_sec = int(tot_ex / (time()-start))
|
|
LOGGER.info(f'{tot_ex} examples trained at '
|
|
f'{ex_per_sec} ex/s')
|
|
TB_LOGGER.add_scalar('perf/ex_per_s',
|
|
ex_per_sec, global_step)
|
|
LOGGER.info(f'===========================================')
|
|
|
|
if global_step % opts.valid_steps == 0:
|
|
val_log, results = validate(
|
|
model, val_dataloader, label2ans)
|
|
with open(f'{opts.output_dir}/results/'
|
|
f'results_{global_step}_'
|
|
f'rank{rank}.json', 'w') as f:
|
|
json.dump(results, f)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, global_step)
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
if global_step >= opts.num_train_steps:
|
|
break
|
|
n_epoch += 1
|
|
LOGGER.info(f"finished {n_epoch} epochs")
|
|
val_log, results = validate(model, val_dataloader, label2ans)
|
|
with open(f'{opts.output_dir}/results/'
|
|
f'results_{global_step}_'
|
|
f'rank{rank}_final.json', 'w') as f:
|
|
json.dump(results, f)
|
|
TB_LOGGER.log_scaler_dict(val_log)
|
|
model_saver.save(model, f'{global_step}_final')
|
|
|
|
|
|
@torch.no_grad()
|
|
def validate(model, val_loader, label2ans):
|
|
LOGGER.info("start running validation...")
|
|
model.eval()
|
|
val_loss = 0
|
|
tot_score = 0
|
|
n_ex = 0
|
|
st = time()
|
|
results = {}
|
|
for i, batch in enumerate(val_loader):
|
|
scores = model(batch, compute_loss=False)
|
|
targets = batch['targets']
|
|
loss = F.binary_cross_entropy_with_logits(
|
|
scores, targets, reduction='sum')
|
|
val_loss += loss.item()
|
|
tot_score += compute_score_with_logits(scores, targets).sum().item()
|
|
answers = [label2ans[i]
|
|
for i in scores.max(dim=-1, keepdim=False
|
|
)[1].cpu().tolist()]
|
|
for qid, answer in zip(batch['qids'], answers):
|
|
results[qid] = answer
|
|
n_ex += len(batch['qids'])
|
|
val_loss = sum(all_gather_list(val_loss))
|
|
tot_score = sum(all_gather_list(tot_score))
|
|
n_ex = sum(all_gather_list(n_ex))
|
|
tot_time = time()-st
|
|
val_loss /= n_ex
|
|
val_acc = tot_score / n_ex
|
|
val_log = {'valid/loss': val_loss,
|
|
'valid/acc': val_acc,
|
|
'valid/ex_per_s': n_ex/tot_time}
|
|
model.train()
|
|
LOGGER.info(f"validation finished in {int(tot_time)} seconds, "
|
|
f"score: {val_acc*100:.2f}")
|
|
return val_log, results
|
|
|
|
|
|
def compute_score_with_logits(logits, labels):
|
|
logits = torch.max(logits, 1)[1] # argmax
|
|
one_hots = torch.zeros(*labels.size(), device=labels.device)
|
|
one_hots.scatter_(1, logits.view(-1, 1), 1)
|
|
scores = (one_hots * labels)
|
|
return scores
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Required parameters
|
|
# TODO datasets
|
|
parser.add_argument('--compressed_db', action='store_true',
|
|
help='use compressed LMDB')
|
|
parser.add_argument("--model_config",
|
|
default=None, type=str,
|
|
help="json file for model architecture")
|
|
parser.add_argument("--checkpoint",
|
|
default=None, type=str,
|
|
help="pretrained model")
|
|
|
|
parser.add_argument(
|
|
"--output_dir", default=None, type=str,
|
|
help="The output directory where the model checkpoints will be "
|
|
"written.")
|
|
|
|
# Prepro parameters
|
|
parser.add_argument('--max_txt_len', type=int, default=60,
|
|
help='max number of tokens in text (BERT BPE)')
|
|
parser.add_argument('--conf_th', type=float, default=0.2,
|
|
help='threshold for dynamic bounding boxes '
|
|
'(-1 for fixed)')
|
|
parser.add_argument('--max_bb', type=int, default=100,
|
|
help='max number of bounding boxes')
|
|
parser.add_argument('--min_bb', type=int, default=10,
|
|
help='min number of bounding boxes')
|
|
parser.add_argument('--num_bb', type=int, default=36,
|
|
help='static number of bounding boxes')
|
|
|
|
# training parameters
|
|
parser.add_argument("--train_batch_size", default=4096, type=int,
|
|
help="Total batch size for training. "
|
|
"(batch by tokens)")
|
|
parser.add_argument("--val_batch_size", default=4096, type=int,
|
|
help="Total batch size for validation. "
|
|
"(batch by tokens)")
|
|
parser.add_argument('--gradient_accumulation_steps', type=int, default=16,
|
|
help="Number of updates steps to accumualte before "
|
|
"performing a backward/update pass.")
|
|
parser.add_argument("--learning_rate", default=3e-5, type=float,
|
|
help="The initial learning rate for Adam.")
|
|
parser.add_argument("--lr_mul", default=1.0, type=float,
|
|
help="multiplier for top layer lr")
|
|
parser.add_argument("--valid_steps", default=1000, type=int,
|
|
help="Run validation every X steps")
|
|
parser.add_argument("--num_train_steps", default=100000, type=int,
|
|
help="Total number of training updates to perform.")
|
|
parser.add_argument("--optim", default='adam',
|
|
choices=['adam', 'adamax', 'adamw'],
|
|
help="optimizer")
|
|
parser.add_argument("--betas", default=[0.9, 0.98], nargs='+',
|
|
help="beta for adam optimizer")
|
|
parser.add_argument("--decay", default='linear',
|
|
choices=['linear', 'invsqrt', 'constant', 'vqa'],
|
|
help="learning rate decay method")
|
|
parser.add_argument("--decay_int", default=2000, type=int,
|
|
help="interval between VQA lr decy")
|
|
parser.add_argument("--warm_int", default=2000, type=int,
|
|
help="interval for VQA lr warmup")
|
|
parser.add_argument("--decay_st", default=20000, type=int,
|
|
help="when to start decay")
|
|
parser.add_argument("--decay_rate", default=0.2, type=float,
|
|
help="ratio of lr decay")
|
|
parser.add_argument("--dropout", default=0.1, type=float,
|
|
help="tune dropout regularization")
|
|
parser.add_argument("--weight_decay", default=0.0, type=float,
|
|
help="weight decay (L2) regularization")
|
|
parser.add_argument("--grad_norm", default=2.0, type=float,
|
|
help="gradient clipping (-1 for no clipping)")
|
|
parser.add_argument("--warmup_steps", default=4000, type=int,
|
|
help="Number of training steps to perform linear "
|
|
"learning rate warmup for. (invsqrt decay)")
|
|
|
|
# device parameters
|
|
parser.add_argument('--seed', type=int, default=42,
|
|
help="random seed for initialization")
|
|
parser.add_argument('--fp16', action='store_true',
|
|
help="Whether to use 16-bit float precision instead "
|
|
"of 32-bit")
|
|
parser.add_argument('--n_workers', type=int, default=4,
|
|
help="number of data workers")
|
|
parser.add_argument('--pin_mem', action='store_true', help="pin memory")
|
|
|
|
# can use config files
|
|
parser.add_argument('--config', help='JSON config files')
|
|
|
|
args = parse_with_config(parser)
|
|
|
|
if exists(args.output_dir) and os.listdir(args.output_dir):
|
|
raise ValueError("Output directory ({}) already exists and is not "
|
|
"empty.".format(args.output_dir))
|
|
|
|
# options safe guard
|
|
# TODO
|
|
if args.conf_th == -1:
|
|
assert args.max_bb + args.max_txt_len + 2 <= 512
|
|
else:
|
|
assert args.num_bb + args.max_txt_len + 2 <= 512
|
|
|
|
main(args)
|