logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

701 lines
31 KiB

"""
Pytorch modules
"""
from collections import defaultdict
import copy
import json
import logging
from io import open
import torch
from torch import nn
from torch.nn import functional as F
# from apex.normalization.fused_layer_norm import FusedLayerNorm as LayerNorm
from torch.nn import LayerNorm
from .layer import GELU, BertLayer, BertPooler, BertOnlyMLMHead
from .ot import optimal_transport_dist
logger = logging.getLogger(__name__)
class UniterConfig(object):
"""Configuration class to store the configuration of a `UniterModel`.
"""
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_hidden_layers_img=1,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02):
"""Constructs UniterConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in
`UniterModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer
encoder.
num_attention_heads: Number of attention heads for each attention
layer in the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e.
feed-forward) layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string)
in the encoder and pooler. If string, "gelu", "relu" and
"swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully
connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this
model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed
into `UniterModel`.
initializer_range: The sttdev of the truncated_normal_initializer
for initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file,
"r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_hidden_layers_img = num_hidden_layers_img
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
else:
raise ValueError("First argument must be either a vocabulary size "
"(int) or the path to a pretrained model config "
"file (str)")
@classmethod
def from_dict(cls, json_object):
"""Constructs a `UniterConfig` from a
Python dictionary of parameters."""
config = UniterConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `UniterConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class UniterPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super().__init__()
if not isinstance(config, UniterConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of "
"class `UniterConfig`. To create a model from a Google "
"pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses
# truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0,
std=self.config.initializer_range)
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, config_file, state_dict, *inputs, **kwargs):
"""
Instantiate a UniterPreTrainedModel from a pre-trained model file or a
pytorch state dict.
Params:
config_file: config json file
state_dict: an state dictionnary
*inputs, **kwargs: additional input for the specific Uniter class
"""
# Load config
config = UniterConfig.from_json_file(config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
# Load from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = ({} if metadata is None
else metadata.get(prefix[:-1], {}))
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys,
unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
start_prefix = ''
if not hasattr(model, 'bert') and any(s.startswith('bert.')
for s in state_dict.keys()):
start_prefix = 'bert.'
load(model, prefix=start_prefix)
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from "
"pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in "
"{}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for '
'{}:\n\t{}'.format(
model.__class__.__name__,
"\n\t".join(error_msgs)))
return model
class UniterTextEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size,
config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings,
config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model
# variable name and be able to load any TensorFlow checkpoint file
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, position_ids, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = (words_embeddings
+ position_embeddings
+ token_type_embeddings)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class UniterImageEmbeddings(nn.Module):
def __init__(self, config, img_dim):
super().__init__()
self.img_linear = nn.Linear(img_dim, config.hidden_size)
self.img_layer_norm = LayerNorm(config.hidden_size, eps=1e-12)
self.pos_layer_norm = LayerNorm(config.hidden_size, eps=1e-12)
self.pos_linear = nn.Linear(7, config.hidden_size)
self.mask_embedding = nn.Embedding(2, img_dim, padding_idx=0)
# tf naming convention for layer norm
self.LayerNorm = LayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, img_feat, img_pos_feat, type_embeddings, img_masks=None):
if img_masks is not None:
self.mask_embedding.weight.data[0, :].fill_(0)
mask = self.mask_embedding(img_masks.long())
img_feat = img_feat + mask
transformed_im = self.img_layer_norm(self.img_linear(img_feat))
transformed_pos = self.pos_layer_norm(self.pos_linear(img_pos_feat))
embeddings = transformed_im + transformed_pos + type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class UniterEncoder(nn.Module):
def __init__(self, config):
super().__init__()
layer = BertLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer)
for _ in range(config.num_hidden_layers)])
def forward(self, input_, attention_mask,
output_all_encoded_layers=True):
all_encoder_layers = []
hidden_states = input_
for layer_module in self.layer:
hidden_states = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
return all_encoder_layers
def pad_tensor_to_mul(tensor, dim=0, mul=8):
""" pad tensor to multiples (8 for tensor cores) """
# TODO find out whether this helps speed
return tensor, 0
t_size = list(tensor.size())
n_pad = mul - t_size[dim] % mul
if n_pad == mul:
n_pad = 0
padded_tensor = tensor
else:
t_size[dim] = n_pad
pad = torch.zeros(*t_size, dtype=tensor.dtype, device=tensor.device)
padded_tensor = torch.cat([tensor, pad], dim=dim)
return padded_tensor, n_pad
class UniterModel(UniterPreTrainedModel):
""" Modification for Joint Vision-Language Encoding
"""
def __init__(self, config, img_dim):
super().__init__(config)
self.embeddings = UniterTextEmbeddings(config)
self.img_embeddings = UniterImageEmbeddings(config, img_dim)
self.encoder = UniterEncoder(config)
self.pooler = BertPooler(config)
self.apply(self.init_weights)
def _compute_txt_embeddings(self, input_ids, position_ids,
txt_type_ids=None):
output = self.embeddings(input_ids, position_ids, txt_type_ids)
return output
def _compute_img_embeddings(self, img_feat, img_pos_feat, img_masks=None,
img_type_ids=None):
if img_type_ids is None:
img_type_ids = torch.ones_like(img_feat[:, :, 0].long())
img_type_embeddings = self.embeddings.token_type_embeddings(
img_type_ids)
output = self.img_embeddings(img_feat, img_pos_feat,
img_type_embeddings, img_masks)
return output
def _compute_img_txt_embeddings(self, input_ids, position_ids,
img_feat, img_pos_feat,
gather_index, img_masks=None,
txt_type_ids=None, img_type_ids=None):
txt_emb = self._compute_txt_embeddings(
input_ids, position_ids, txt_type_ids)
img_emb = self._compute_img_embeddings(
img_feat, img_pos_feat, img_masks, img_type_ids)
# align back to most compact input
if gather_index is None:
embedding_output = torch.cat([txt_emb, img_emb], dim=1)
else:
gather_index = gather_index.unsqueeze(-1).expand(
-1, -1, self.config.hidden_size)
embedding_output = torch.gather(torch.cat([txt_emb, img_emb], dim=1),
dim=1, index=gather_index)
return embedding_output
def forward(self, input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index=None, img_masks=None,
output_all_encoded_layers=True,
txt_type_ids=None, img_type_ids=None):
# compute self-attention mask
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(
dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# embedding layer
if input_ids is None:
# image only
embedding_output = self._compute_img_embeddings(
img_feat, img_pos_feat, img_masks, img_type_ids)
elif img_feat is None:
# text only
embedding_output = self._compute_txt_embeddings(
input_ids, position_ids, txt_type_ids)
else:
embedding_output = self._compute_img_txt_embeddings(
input_ids, position_ids,
img_feat, img_pos_feat,
gather_index, img_masks, txt_type_ids, img_type_ids)
encoded_layers = self.encoder(
embedding_output, extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return encoded_layers
class RegionFeatureRegression(nn.Module):
def __init__(self, hidden_size, feat_dim, img_linear_weight):
super().__init__()
self.net = nn.Sequential(nn.Linear(hidden_size, hidden_size),
GELU(),
LayerNorm(hidden_size, eps=1e-12))
self.weight = img_linear_weight
self.bias = nn.Parameter(torch.zeros(feat_dim))
def forward(self, input_):
hidden = self.net(input_)
output = F.linear(hidden, self.weight.t(), self.bias)
return output
class RegionClassification(nn.Module):
def __init__(self, hidden_size, label_dim):
super().__init__()
self.net = nn.Sequential(nn.Linear(hidden_size, hidden_size),
GELU(),
LayerNorm(hidden_size, eps=1e-12),
nn.Linear(hidden_size, label_dim))
def forward(self, input_):
output = self.net(input_)
return output
class UniterForPretraining(UniterPreTrainedModel):
""" MLM + MRM """
def __init__(self, config, img_dim, img_label_dim,
nce_temp=1, ot_pos_only=False):
super().__init__(config)
self.bert = UniterModel(config, img_dim)
self.cls = BertOnlyMLMHead(
config, self.bert.embeddings.word_embeddings.weight)
self.feat_regress = RegionFeatureRegression(
config.hidden_size, img_dim,
self.bert.img_embeddings.img_linear.weight)
self.region_classifier = RegionClassification(
config.hidden_size, img_label_dim)
self.itm_output = nn.Linear(config.hidden_size, 2)
'''
self.nce_output = BertPredictionHeadTransform(config)
self.nce_output = nn.Sequential(BertPredictionHeadTransform(config),
nn.Linear(config.hidden_size, img_dim))
self.nce_norm = LayerNorm(config.hidden_size, eps=1e-12)
self.nce_temp = nce_temp # temperature
'''
self.ot_pos_only = ot_pos_only
self.apply(self.init_weights)
self.vocab_pad = 0
def pad_vocab(self):
# FIXME better padding after integrating huggingface
emb_w = self.bert.embeddings.word_embeddings.weight.data
padded_emb_w, n_pad = pad_tensor_to_mul(emb_w)
padded_emb_w = nn.Parameter(padded_emb_w)
self.bert.embeddings.word_embeddings.weight = padded_emb_w
self.cls.predictions.decoder.weight = padded_emb_w
self.vocab_pad = n_pad
def forward(self, batch, task, compute_loss=True):
batch = defaultdict(lambda: None, batch)
input_ids = batch['input_ids']
position_ids = batch['position_ids']
img_feat = batch['img_feat']
img_pos_feat = batch['img_pos_feat']
attention_mask = batch['attn_masks']
gather_index = batch['gather_index']
if task == 'mlm':
txt_labels = batch['txt_labels']
return self.forward_mlm(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
txt_labels, compute_loss)
elif task == 'mrfr':
img_mask_tgt = batch['img_mask_tgt']
img_masks = batch['img_masks']
mrfr_feat_target = batch['feat_targets']
return self.forward_mrfr(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
img_masks, img_mask_tgt,
mrfr_feat_target, compute_loss)
elif task == 'mrm-nce':
raise NotImplementedError('nce does not work')
img_mask_tgt = batch['img_mask_tgt']
img_masks = batch['img_masks']
img_masks_in = batch['img_masks_in']
feat_target = batch['feat_targets']
neg_feats = batch['neg_feats']
return self.forward_mrm_nce(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
img_masks_in, img_masks, img_mask_tgt,
feat_target, neg_feats, compute_loss)
elif task == 'itm':
targets = batch['targets']
ot_inputs = batch['ot_inputs']
return self.forward_itm(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
targets, ot_inputs, compute_loss)
elif task.startswith('mrc'):
img_mask_tgt = batch['img_mask_tgt']
img_masks = batch['img_masks']
mrc_label_target = batch['label_targets']
return self.forward_mrc(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
img_masks, img_mask_tgt,
mrc_label_target, task, compute_loss)
else:
raise ValueError('invalid task')
# MLM
def forward_mlm(self, input_ids, position_ids, img_feat, img_pos_feat,
attention_mask, gather_index,
txt_labels, compute_loss=True):
sequence_output = self.bert(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
output_all_encoded_layers=False)
# get only the text part
sequence_output = sequence_output[:, :input_ids.size(1), :]
# only compute masked tokens for better efficiency
masked_output = self._compute_masked_hidden(sequence_output,
txt_labels != -1)
prediction_scores = self._pad_layer_unpad(masked_output, self.cls)
if self.vocab_pad:
prediction_scores = prediction_scores[:, :-self.vocab_pad]
masked_lm_loss = F.cross_entropy(prediction_scores,
txt_labels[txt_labels != -1],
reduction='none')
return masked_lm_loss, prediction_scores
def _compute_masked_hidden(self, hidden, mask):
""" get only the masked region (don't compute unnecessary hiddens) """
mask = mask.unsqueeze(-1).expand_as(hidden)
hidden_masked = hidden[mask].contiguous().view(-1, hidden.size(-1))
return hidden_masked
def _pad_layer_unpad(self, input_, layer):
input_, n_pad = pad_tensor_to_mul(input_)
output = layer(input_)
if n_pad:
output = output[:-n_pad, :]
return output
def mlm_eval(self, input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index, gather_tgt):
raise ValueError('Do not use this')
sequence_output = self.bert(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
output_all_encoded_layers=False)
# get only the text part (excluding [CLS], [SEP])
sequence_output = sequence_output[:, 1:input_ids.size(1)-1, :]
# only compute masked tokens for better efficiency
index = gather_tgt.unsqueeze(-1).expand(
-1, -1, self.config.hidden_size)
masked_output = torch.gather(sequence_output, dim=0, index=index)
prediction_scores = self.cls(masked_output)
if self.vocab_pad:
prediction_scores = prediction_scores[..., :-self.vocab_pad]
return prediction_scores
# MRFR
def forward_mrfr(self, input_ids, position_ids, img_feat, img_pos_feat,
attention_mask, gather_index, img_masks, img_mask_tgt,
feat_targets, compute_loss=True):
sequence_output = self.bert(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
output_all_encoded_layers=False,
img_masks=img_masks)
# only compute masked tokens for better efficiency
masked_output = self._compute_masked_hidden(sequence_output,
img_mask_tgt)
prediction_feat = self._pad_layer_unpad(masked_output,
self.feat_regress)
mrfr_loss = F.mse_loss(prediction_feat, feat_targets,
reduction='none')
return mrfr_loss, prediction_feat
# MRM-NCE
def forward_mrm_nce(self, input_ids, position_ids, img_feat, img_pos_feat,
attention_mask, gather_index,
img_masks_in, img_masks, img_mask_tgt,
feat_targets, neg_feats, compute_loss=True):
sequence_output = self.bert(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
output_all_encoded_layers=False,
img_masks=img_masks_in)
# only compute masked tokens for better efficiency
masked_output = self._compute_masked_hidden(sequence_output,
img_mask_tgt)
masked_output = self._pad_layer_unpad(masked_output, self.nce_output)
# neg within batch
batch_neg = self._compute_masked_hidden(img_feat, ~img_masks)
neg_feats, _ = pad_tensor_to_mul(
torch.cat([neg_feats, batch_neg], dim=0))
# shared image linear transform
neg_output = self.nce_norm(
self.bert.img_embeddings.img_linear(neg_feats))
pos_output = self._pad_layer_unpad(feat_targets,
self.bert.img_embeddings.img_linear)
pos_output = self.nce_norm(pos_output)
mrm_nce_loss = self.mrm_nce(masked_output, pos_output,
neg_output, compute_loss=True)
return mrm_nce_loss, masked_output # ???
def mrm_nce(self, masked_output, pos_output, neg_output,
compute_loss=True):
# dot product of ground truth feature
masked_score = masked_output.matmul(pos_output.t())
# dot product of neative samples
neg_score = masked_output.matmul(neg_output.t())
logits = torch.cat([masked_score, neg_score], dim=1).float()
targets = torch.arange(0, masked_output.size(0),
dtype=torch.long, device=logits.device)
loss = F.cross_entropy(logits/self.nce_temp, targets,
reduction='none')
return loss, logits
def forward_itm(self, input_ids, position_ids, img_feat, img_pos_feat,
attention_mask, gather_index, targets, ot_inputs,
compute_loss=True):
sequence_output = self.bert(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
output_all_encoded_layers=False)
pooled_output = self.bert.pooler(sequence_output)
rank_scores = self.itm_output(pooled_output)
# OT loss
if ot_inputs is not None:
ot_scatter = ot_inputs['ot_scatter']
b = sequence_output.size(0)
tl = input_ids.size(1)
il = img_feat.size(1)
max_l = max(ot_inputs['scatter_max'] + 1, tl+il)
ot_scatter = ot_scatter.unsqueeze(-1).expand_as(sequence_output)
ctx_emb = torch.zeros(b, max_l, self.config.hidden_size,
dtype=sequence_output.dtype,
device=sequence_output.device
).scatter_(dim=1, index=ot_scatter,
src=sequence_output)
txt_emb = ctx_emb[:, :tl, :]
img_emb = ctx_emb[:, tl:tl+il, :]
txt_pad = ot_inputs['txt_pad']
img_pad = ot_inputs['img_pad']
ot_dist = optimal_transport_dist(txt_emb, img_emb,
txt_pad, img_pad)
if self.ot_pos_only:
ot_loss = ot_dist.masked_select(targets == 1)
else:
ot_pos_dist = ot_dist.masked_select(targets == 1)
ot_neg_dist = ot_dist.masked_select(targets == 0)
ot_loss = (ot_pos_dist, ot_neg_dist)
else:
ot_loss = None
if compute_loss:
itm_loss = F.cross_entropy(rank_scores, targets, reduction='none')
return itm_loss, ot_loss
else:
return rank_scores, ot_loss
# MRC
def forward_mrc(self, input_ids, position_ids, img_feat, img_pos_feat,
attention_mask, gather_index, img_masks, img_mask_tgt,
label_targets, task, compute_loss=True):
sequence_output = self.bert(input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index,
output_all_encoded_layers=False,
img_masks=img_masks)
# only compute masked regions for better efficiency
masked_output = self._compute_masked_hidden(sequence_output,
img_mask_tgt)
prediction_soft_label = self._pad_layer_unpad(masked_output,
self.region_classifier)
if "kl" in task:
prediction_soft_label = F.log_softmax(
prediction_soft_label, dim=-1)
mrc_loss = F.kl_div(
prediction_soft_label, label_targets, reduction='none')
else:
# background class should not be the target
label_targets = torch.max(label_targets[:, 1:], dim=-1)[1] + 1
mrc_loss = F.cross_entropy(
prediction_soft_label, label_targets,
ignore_index=0, reduction='none')
return mrc_loss, prediction_soft_label