copied
Readme
Files and versions
Updated 2 years ago
image-text-embedding
Image-Text Retrieval Embdding with LightningDOT
author: David Wang
Description
This operator extracts features for image or text with LightningDOT which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity.
Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
Write the pipeline in simplified style:
import towhee
towhee.glob('./teddy.jpg') \
.image_decode() \
.image_text_embedding.lightningdot(modality='image') \
.show()
towhee.dc(["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.lightningdot(modality='text') \
.show()
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
towhee.glob['path']('./teddy.jpg') \
.image_decode['path', 'img']() \
.image_text_embedding.lightningdot['img', 'vec'](modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](["A teddybear on a skateboard in Times Square."]) \
.image_text_embedding.lightningdot['text','vec'](modality='text') \
.select['text', 'vec']() \
.show()
Factory Constructor
Create the operator via the following factory method
lightningdot(modality)
Parameters:
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.
wxywb
a4ce3d8caf
| 2 Commits | ||
---|---|---|---|
.gitattributes |
1.1 KiB
|
2 years ago | |
README.md |
2.5 KiB
|
2 years ago | |
__init__.py |
700 B
|
2 years ago | |
lightningdot.py |
5.9 KiB
|
2 years ago | |
requirements.txt |
60 B
|
2 years ago | |
tabular1.png |
22 KiB
|
2 years ago | |
tabular2.png |
176 KiB
|
2 years ago | |
utils.py |
1.6 KiB
|
2 years ago | |
vec1.png |
13 KiB
|
2 years ago | |
vec2.png |
14 KiB
|
2 years ago |