# Russian Image-Text Retrieval Embdding with CLIP *author: David Wang*
## Description This operator extracts features for image or text with [CLIP](https://arxiv.org/abs/2103.00020) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This is a Russian version of CLIP adopted from [ai-forever/ru-clip](https://github.com/ai-forever/ru-clip).
## Code Example Load an image from path './teddy.jpg' to generate an image embedding. Read the text 'Плюшевый мишка на скейтборде на Таймс-сквер.' to generate an text embedding. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./teddy.jpg') \ .image_decode() \ .image_text_embedding.ru_clip(model_name='ruclip-vit-base-patch32-224', modality='image') \ .show() towhee.dc(["'Плюшевый мишка на скейтборде на Таймс-сквер."]) \ .image_text_embedding.ru_clip(model_name='ruclip-vit-base-patch32-224', modality='text') \ .show() ``` result1 result2 *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./teddy.jpg') \ .image_decode['path', 'img']() \ .image_text_embedding.ru_clip['img', 'vec'](model_name='ruclip-vit-base-patch32-224', modality='image') \ .select['img', 'vec']() \ .show() towhee.dc['text'](["Плюшевый мишка на скейтборде на Таймс-сквер."]) \ .image_text_embedding.ru_clip['text','vec'](model_name='ruclip-vit-base-patch32-224', modality='text') \ .select['text', 'vec']() \ .show() ``` result1 result2
## Factory Constructor Create the operator via the following factory method ***ru_clip(model_name, modality)*** **Parameters:** ​ ***model_name:*** *str* ​ The model name of CLIP. Supported model names: - ruclip-vit-base-patch32-224 - ruclip-vit-base-patch16-224 - ruclip-vit-large-patch14-224 - ruclip-vit-large-patch14-336 - ruclip-vit-base-patch32-384 - ruclip-vit-base-patch16-384 ​ ***modality:*** *str* ​ Which modality(*image* or *text*) is used to generate the embedding.
## Interface An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. **Parameters:** ​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* ​ The data (image or text based on specified modality) to generate embedding. **Returns:** *numpy.ndarray* ​ The data embedding extracted by model.