logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

111 lines
4.2 KiB

# Image-Text Retrieval Embdding with SLIP
*author: David Wang*
<br />
## Description
This operator extracts features for image or text with [SLIP](https://arxiv.org/abs/2112.12750), a multi-task learning framework for combining self-supervised learning and CLIP pre-training. This is an adaptation from [facebookresearch/SLIP](https://github.com/facebookresearch/SLIP).
<br />
## Code Example
Load an image from path './moon.jpg' to generate an image embedding.
Read the text 'moon in the night.' to generate a text embedding.
*Write a pipeline with explicit inputs/outputs name specifications:*
```python
from towhee import pipe, ops, DataCollection
img_pipe = (
pipe.input('url')
.map('url', 'img', ops.image_decode.cv2_rgb())
.map('img', 'vec', ops.image_text_embedding.slip(model_name='slip_vit_small', modality='image'))
.output('img', 'vec')
)
text_pipe = (
pipe.input('text')
.map('text', 'vec', ops.image_text_embedding.slip(model_name='slip_vit_small', modality='text'))
.output('text', 'vec')
)
DataCollection(img_pipe('./moon.jpg')).show()
DataCollection(text_pipe('moon in the night.')).show()
```
<img src="./tabular1.png" alt="result1" style="height:60px;"/>
<img src="./tabular2.png" alt="result2" style="height:60px;"/>
<br />
## Factory Constructor
Create the operator via the following factory method
***slip(model_name, modality)***
**Parameters:**
***model_name:*** *str*
​ The model name of SLIP. Supported model names:
- slip_vit_small
- slip_vit_base
- slip_vit_large
***modality:*** *str*
​ Which modality(*image* or *text*) is used to generate the embedding.
<br />
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
​ The data (image or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
​ The data embedding extracted by model.
2 years ago
# More Resources
- [CLIP Object Detection: Merging AI Vision with Language Understanding - Zilliz blog](https://zilliz.com/learn/CLIP-object-detection-merge-AI-vision-with-language-understanding): CLIP Object Detection combines CLIP's text-image understanding with object detection tasks, allowing CLIP to locate and identify objects in images using texts.
- [Supercharged Semantic Similarity Search in Production - Zilliz blog](https://zilliz.com/learn/supercharged-semantic-similarity-search-in-production): Building a Blazing Fast, Highly Scalable Text-to-Image Search with CLIP embeddings and Milvus, the most advanced open-source vector database.
- [The guide to clip-vit-base-patch32 | OpenAI](https://zilliz.com/ai-models/clip-vit-base-patch32): clip-vit-base-patch32: a CLIP multimodal model variant by OpenAI for image and text embedding.
- [Hybrid Search: Combining Text and Image for Enhanced Search Capabilities - Zilliz blog](https://zilliz.com/learn/hybrid-search-combining-text-and-image): Milvus enables hybrid sparse and dense vector search and multi-vector search capabilities, simplifying the vectorization and search process.
- [The guide to all-MiniLM-L12-v2 | Hugging Face](https://zilliz.com/ai-models/all-MiniLM-L12-v2): all-MiniLM-L12-v2: a text embedding model ideal for semantic search and RAG and fine-tuned based on Microsoft/MiniLM-L12-H384-uncased
- [Build a Multimodal Search System with Milvus - Zilliz blog](https://zilliz.com/blog/how-vector-dbs-are-revolutionizing-unstructured-data-search-ai-applications): Implementing a Multimodal Similarity Search System Using Milvus, Radient, ImageBind, and Meta-Chameleon-7b
- [Sparse and Dense Embeddings: A Guide for Effective Information Retrieval with Milvus | Zilliz Webinar](https://zilliz.com/event/sparse-and-dense-embeddings-webinar): Zilliz webinar covering what sparse and dense embeddings are and when you'd want to use one over the other.
- [Image Embeddings for Enhanced Image Search - Zilliz blog](https://zilliz.com/learn/image-embeddings-for-enhanced-image-search): Image Embeddings are the core of modern computer vision algorithms. Understand their implementation and use cases and explore different image embedding models.