slip
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
94 lines
3.3 KiB
94 lines
3.3 KiB
2 years ago
|
# Copyright 2021 Zilliz. All rights reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import sys
|
||
|
from pathlib import Path
|
||
|
|
||
|
import torch
|
||
|
from torchvision import transforms
|
||
|
|
||
|
from towhee import register
|
||
|
from towhee.operator.base import NNOperator, OperatorFlag
|
||
|
from towhee.types.arg import arg, to_image_color
|
||
|
from towhee.types.image_utils import from_pil, to_pil
|
||
|
|
||
|
from tokenizer import SimpleTokenizer
|
||
|
|
||
|
def get_model(model):
|
||
|
if isinstance(model, torch.nn.DataParallel) \
|
||
|
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||
|
return model.module
|
||
|
else:
|
||
|
return model
|
||
|
|
||
|
@register(output_schema=['vec'])
|
||
|
class Slip(NNOperator)
|
||
|
"""
|
||
|
SLIP multi-modal embedding operator
|
||
|
"""
|
||
|
def __init__(self, model_name: str, modality: str):
|
||
|
super().__init__()
|
||
|
sys.path.append(str(Path(__file__).parent))
|
||
|
self.tokenizer = SimpleTokenizer()
|
||
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||
|
self.model.to(self.device)
|
||
|
self.model.eval()
|
||
|
|
||
|
self.tfms = transforms.Compose([
|
||
|
transforms.Resize(224),
|
||
|
transforms.CenterCrop(224),
|
||
|
lambda x: x.convert('RGB'),
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
||
|
std=[0.229, 0.224, 0.225])
|
||
|
])
|
||
|
|
||
|
def __call__(self, data):
|
||
|
if self._modality == 'image':
|
||
|
vec = self._inference_from_image(data)
|
||
|
elif self._modality == 'text':
|
||
|
vec = self._inference_from_text(data)
|
||
|
else:
|
||
|
raise ValueError("modality[{}] not implemented.".format(self._modality))
|
||
|
return vec.detach().cpu().numpy().flatten()
|
||
|
|
||
|
def _inference_from_text(self, text):
|
||
|
texts = tokenizer(texts).cuda(non_blocking=True)
|
||
|
texts = texts.view(-1, 77).contiguous()
|
||
|
embedding = get_model(self.model).encode_text(texts)
|
||
|
embedding = embedding / embedding.norm(dim=-1, keepdim=True)
|
||
|
|
||
|
@arg(1, to_image_color('RGB'))
|
||
|
def _inference_from_image(self, img):
|
||
|
img = self._preprocess(img)
|
||
|
img = img.to(self.device)
|
||
|
embedding = get_model(self.model).encode_image(img)
|
||
|
return embedding
|
||
|
|
||
|
def _preprocess(self, img):
|
||
|
img = to_pil(img)
|
||
|
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
|
||
|
return processed_img
|
||
|
|
||
|
def _configs(self):
|
||
|
config = {}
|
||
|
config['slip_vit_small'] = {}
|
||
|
config['slip_vit_small']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_small_100ep.pt'
|
||
|
config['slip_vit_base'] = {}
|
||
|
config['slip_vit_base']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_base_100ep.pt'
|
||
|
config['slip_vit_large'] = {}
|
||
|
config['slip_vit_large']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt'
|
||
|
return config
|
||
|
|