logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

94 lines
3.3 KiB

# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from pathlib import Path
import torch
from torchvision import transforms
from towhee import register
from towhee.operator.base import NNOperator, OperatorFlag
from towhee.types.arg import arg, to_image_color
from towhee.types.image_utils import from_pil, to_pil
from tokenizer import SimpleTokenizer
def get_model(model):
if isinstance(model, torch.nn.DataParallel) \
or isinstance(model, torch.nn.parallel.DistributedDataParallel):
return model.module
else:
return model
@register(output_schema=['vec'])
class Slip(NNOperator)
"""
SLIP multi-modal embedding operator
"""
def __init__(self, model_name: str, modality: str):
super().__init__()
sys.path.append(str(Path(__file__).parent))
self.tokenizer = SimpleTokenizer()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model.to(self.device)
self.model.eval()
self.tfms = transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
lambda x: x.convert('RGB'),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def __call__(self, data):
if self._modality == 'image':
vec = self._inference_from_image(data)
elif self._modality == 'text':
vec = self._inference_from_text(data)
else:
raise ValueError("modality[{}] not implemented.".format(self._modality))
return vec.detach().cpu().numpy().flatten()
def _inference_from_text(self, text):
texts = tokenizer(texts).cuda(non_blocking=True)
texts = texts.view(-1, 77).contiguous()
embedding = get_model(self.model).encode_text(texts)
embedding = embedding / embedding.norm(dim=-1, keepdim=True)
@arg(1, to_image_color('RGB'))
def _inference_from_image(self, img):
img = self._preprocess(img)
img = img.to(self.device)
embedding = get_model(self.model).encode_image(img)
return embedding
def _preprocess(self, img):
img = to_pil(img)
processed_img = self.tfms(img).unsqueeze(0).to(self.device)
return processed_img
def _configs(self):
config = {}
config['slip_vit_small'] = {}
config['slip_vit_small']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_small_100ep.pt'
config['slip_vit_base'] = {}
config['slip_vit_base']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_base_100ep.pt'
config['slip_vit_large'] = {}
config['slip_vit_large']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt'
return config