diff --git a/README.md b/README.md index cb0b00f..0d5a3e3 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,110 @@ -# slip +# Image-Text Retrieval Embdding with SLIP + +*author: David Wang* + + +
+ + + +## Description + +This operator extracts features for image or text with [SLIP](https://arxiv.org/abs/2112.12750), a multi-task learning framework for combining self-supervised learning and CLIP pre-training. This is an adaptation from [facebookresearch/SLIP](https://github.com/facebookresearch/SLIP). + + +
+ + +## Code Example + +Load an image from path './teddy.jpg' to generate an image embedding. + +Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding. + + *Write the pipeline in simplified style*: + +```python +import towhee + +towhee.glob('./moon.jpeg') \ + .image_decode() \ + .image_text_embedding.slip(model_name='slip_vit_small', modality='image') \ + .show() + +towhee.dc(['moon in the night.']) \ + .image_text_embedding.slip(model_name='slip_vit_small', modality='text') \ + .show() +``` +result1 +result2 + +*Write a same pipeline with explicit inputs/outputs name specifications:* + +```python +import towhee + +towhee.glob['path']('./moon.jpeg') \ + .image_decode['path', 'img']() \ + .image_text_embedding.slip['img', 'vec'](model_name='slip_vit_small', modality='image') \ + .select['img', 'vec']() \ + .show() + +towhee.dc['text'](['moon in the night.']) \ + .image_text_embedding.slip['text','vec'](model_name= 'slip_vit_small', modality='text') \ + .select['text', 'vec']() \ + .show() +``` +result1 +result2 + + +
+ + + +## Factory Constructor + +Create the operator via the following factory method + +***slip(model_name, modality)*** + +**Parameters:** + +​ ***model_name:*** *str* + +​ The model name of SLIP. Supported model names: +- slip_vit_small +- slip_vit_base +- slip_vit_large + + +​ ***modality:*** *str* + +​ Which modality(*image* or *text*) is used to generate the embedding. + +
+ + + +## Interface + +An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray. + + +**Parameters:** + +​ ***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str* + +​ The data (image or text based on specified modality) to generate embedding. + + + +**Returns:** *numpy.ndarray* + +​ The data embedding extracted by model. + + + + + diff --git a/tabular1.png b/tabular1.png new file mode 100644 index 0000000..a7480e5 Binary files /dev/null and b/tabular1.png differ diff --git a/tabular2.png b/tabular2.png new file mode 100644 index 0000000..9a74c2e Binary files /dev/null and b/tabular2.png differ diff --git a/vec1.png b/vec1.png new file mode 100644 index 0000000..f59964f Binary files /dev/null and b/vec1.png differ diff --git a/vec2.png b/vec2.png new file mode 100644 index 0000000..fe282f3 Binary files /dev/null and b/vec2.png differ