# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Modified from github.com/openai/CLIP from collections import OrderedDict import numpy as np import timm import torch from torch import nn #import losses class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision vision_width: int, vision_model: nn.Module, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, **kwargs, ): super().__init__() self.context_length = context_length self.vision_width = vision_width self.visual = vision_model self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.image_projection = nn.Parameter(torch.empty(vision_width, embed_dim)) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) nn.init.normal_(self.image_projection, std=self.vision_width ** -0.5) nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def encode_image(self, image): x = self.visual(image) x = x @ self.image_projection return x def encode_text(self, text): x = self.token_embedding(text) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_embed = self.encode_image(image) text_embed = self.encode_text(text) return {'image_embed': image_embed, 'text_embed': text_embed, 'logit_scale': self.logit_scale.exp()} class SIMCLR(nn.Module): def __init__(self, # vision vision_width: int, vision_model: nn.Module, # ssl ssl_mlp_dim: int, ssl_emb_dim: int, **kwargs, ): super().__init__() self.vision_width = vision_width self.visual = vision_model self.image_mlp = self._build_mlp(in_dim=vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim) def _build_mlp(self, in_dim, mlp_dim, out_dim): return nn.Sequential(OrderedDict([ ("layer1", nn.Linear(in_dim, mlp_dim)), ("bn1", nn.SyncBatchNorm(mlp_dim)), ("relu1", nn.ReLU(inplace=True)), ("layer2", nn.Linear(mlp_dim, mlp_dim)), ("bn2", nn.SyncBatchNorm(mlp_dim)), ("relu2", nn.ReLU(inplace=True)), ("layer3", nn.Linear(mlp_dim, out_dim)), ])) def encode_image(self, image): x = self.visual(image) return x def forward(self, aug1, aug2): h1 = self.visual(aug1) h2 = self.visual(aug2) aug1_embed = self.image_mlp(h1) aug2_embed = self.image_mlp(h2) return {'aug1_embed': aug1_embed, 'aug2_embed': aug2_embed} class SLIP(CLIP): def __init__(self, ssl_mlp_dim: int, ssl_emb_dim: int, **kwargs, ): super().__init__(**kwargs) self.image_mlp = self._build_mlp(in_dim=self.vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim) def _build_mlp(self, in_dim, mlp_dim, out_dim): return nn.Sequential(OrderedDict([ ("layer1", nn.Linear(in_dim, mlp_dim)), ("bn1", nn.SyncBatchNorm(mlp_dim)), ("relu1", nn.ReLU(inplace=True)), ("layer2", nn.Linear(mlp_dim, mlp_dim)), ("bn2", nn.SyncBatchNorm(mlp_dim)), ("relu2", nn.ReLU(inplace=True)), ("layer3", nn.Linear(mlp_dim, out_dim)), ])) def forward(self, image, text, aug1, aug2): aug1_embed = self.image_mlp(self.visual(aug1)) aug2_embed = self.image_mlp(self.visual(aug2)) image_embed = self.encode_image(image) text_embed = self.encode_text(text) return {'image_embed': image_embed, 'text_embed': text_embed, 'logit_scale': self.logit_scale.exp(), 'aug1_embed': aug1_embed, 'aug2_embed': aug2_embed} #def get_loss(model, ssl_temp, ssl_scale): # if model.startswith('SLIP'): # ssl_loss = losses.SIMCLRLoss(temperature=ssl_temp) # return losses.SLIPLoss(ssl_loss, ssl_scale) # if model.startswith('CLIP'): # return losses.CLIPLoss() # if model.startswith('SIMCLR'): # return losses.SIMCLRLoss(temperature=ssl_temp) # # #def get_metric_names(model): # if model.startswith('SLIP'): # return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc'] # elif model.startswith('CLIP'): # return ['loss', 'clip_loss', 'clip_acc'] # else: # return ['loss', 'ssl_loss', 'ssl_acc'] @timm.models.registry.register_model def vit_small_mocov3_patch16_224(**kwargs): model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=12, **kwargs) model = timm.models.vision_transformer._create_vision_transformer('vit_small_patch16_224', **model_kwargs) return model def CLIP_VITS16(**kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) model = CLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def SIMCLR_VITS16(**kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) model = SIMCLR(vision_width=384, vision_model=vision_model, **kwargs) return model def SLIP_VITS16(**kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) model = SLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def CLIP_VITB16(**kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) model = CLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def SIMCLR_VITB16(**kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) model = SIMCLR(vision_width=768, vision_model=vision_model, **kwargs) return model def SLIP_VITB16(**kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) model = SLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def CLIP_VITL16(**kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) model = CLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def SIMCLR_VITL16(**kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) model = SIMCLR(vision_width=1024, vision_model=vision_model, **kwargs) return model def SLIP_VITL16(**kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) model = SLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model