# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys from pathlib import Path import torch from torchvision import transforms from towhee import register from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee.types.image_utils import from_pil, to_pil from tokenizer import SimpleTokenizer def get_model(model): if isinstance(model, torch.nn.DataParallel) \ or isinstance(model, torch.nn.parallel.DistributedDataParallel): return model.module else: return model @register(output_schema=['vec']) class Slip(NNOperator) """ SLIP multi-modal embedding operator """ def __init__(self, model_name: str, modality: str): super().__init__() sys.path.append(str(Path(__file__).parent)) self.tokenizer = SimpleTokenizer() self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model.to(self.device) self.model.eval() self.tfms = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), lambda x: x.convert('RGB'), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) def __call__(self, data): if self._modality == 'image': vec = self._inference_from_image(data) elif self._modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec.detach().cpu().numpy().flatten() def _inference_from_text(self, text): texts = tokenizer(texts).cuda(non_blocking=True) texts = texts.view(-1, 77).contiguous() embedding = get_model(self.model).encode_text(texts) embedding = embedding / embedding.norm(dim=-1, keepdim=True) @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): img = self._preprocess(img) img = img.to(self.device) embedding = get_model(self.model).encode_image(img) return embedding def _preprocess(self, img): img = to_pil(img) processed_img = self.tfms(img).unsqueeze(0).to(self.device) return processed_img def _configs(self): config = {} config['slip_vit_small'] = {} config['slip_vit_small']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_small_100ep.pt' config['slip_vit_base'] = {} config['slip_vit_base']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_base_100ep.pt' config['slip_vit_large'] = {} config['slip_vit_large']['weights'] = 'https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt' return config