copied
Readme
Files and versions
2.1 KiB
Image-Text Retrieval Embdding with SLIP
author: David Wang
Description
This operator extracts features for image or text with SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training. This is an adaptation from facebookresearch/SLIP.
Code Example
Load an image from path './moon.jpg' to generate an image embedding.
Read the text 'moon in the night.' to generate a text embedding.
Write a pipeline with explicit inputs/outputs name specifications:
from towhee import pipe, ops, DataCollection
img_pipe = (
pipe.input('url')
.map('url', 'img', ops.image_decode.cv2_rgb())
.map('img', 'vec', ops.image_text_embedding.slip(model_name='slip_vit_small', modality='image'))
.output('img', 'vec')
)
text_pipe = (
pipe.input('text')
.map('text', 'vec', ops.image_text_embedding.slip(model_name='slip_vit_small', modality='text'))
.output('text', 'vec')
)
DataCollection(img_pipe('./moon.jpg')).show()
DataCollection(text_pipe('moon in the night.')).show()
Factory Constructor
Create the operator via the following factory method
slip(model_name, modality)
Parameters:
model_name: str
The model name of SLIP. Supported model names:
- slip_vit_small
- slip_vit_base
- slip_vit_large
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.
2.1 KiB
Image-Text Retrieval Embdding with SLIP
author: David Wang
Description
This operator extracts features for image or text with SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training. This is an adaptation from facebookresearch/SLIP.
Code Example
Load an image from path './moon.jpg' to generate an image embedding.
Read the text 'moon in the night.' to generate a text embedding.
Write a pipeline with explicit inputs/outputs name specifications:
from towhee import pipe, ops, DataCollection
img_pipe = (
pipe.input('url')
.map('url', 'img', ops.image_decode.cv2_rgb())
.map('img', 'vec', ops.image_text_embedding.slip(model_name='slip_vit_small', modality='image'))
.output('img', 'vec')
)
text_pipe = (
pipe.input('text')
.map('text', 'vec', ops.image_text_embedding.slip(model_name='slip_vit_small', modality='text'))
.output('text', 'vec')
)
DataCollection(img_pipe('./moon.jpg')).show()
DataCollection(text_pipe('moon in the night.')).show()
Factory Constructor
Create the operator via the following factory method
slip(model_name, modality)
Parameters:
model_name: str
The model name of SLIP. Supported model names:
- slip_vit_small
- slip_vit_base
- slip_vit_large
modality: str
Which modality(image or text) is used to generate the embedding.
Interface
An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.
Parameters:
data: towhee.types.Image (a sub-class of numpy.ndarray) or str
The data (image or text based on specified modality) to generate embedding.
Returns: numpy.ndarray
The data embedding extracted by model.