# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from transformers import BertForSequenceClassification, BertConfig, BertTokenizer from transformers import CLIPProcessor, CLIPModel @register(output_schema=['vec']) class Taiyi(NNOperator): """ Taiyi multi-modal embedding operator """ def __init__(self, model_name: str, modality: str): self.modality = modality self.device = "cuda" if torch.cuda.is_available() else "cpu" self.text_tokenizer = BertTokenizer.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese") self.text_encoder = BertForSequenceClassification.from_pretrained("IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese").eval() self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14") self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14") def inference_single_data(self, data): if self.modality == 'image': vec = self._inference_from_image(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec.detach().cpu().numpy().flatten() def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results def _inference_from_text(self, text): self.text = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device) text_features = text_encoder(text).logits return text_features @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): image = to_pil(image) image = self.processor(images=image.raw), return_tensors="pt") image_features = clip_model.get_image_features(**image) return image_features