# Copyright 2021 Zilliz. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from transformers import BertForSequenceClassification, BertConfig, BertTokenizer from transformers import CLIPProcessor, CLIPModel import sys from pathlib import Path import torch from torchvision import transforms from towhee.types.image_utils import to_pil from towhee.operator.base import NNOperator, OperatorFlag from towhee.types.arg import arg, to_image_color from towhee import register @register(output_schema=['vec']) class Taiyi(NNOperator): """ Taiyi multi-modal embedding operator """ def __init__(self, model_name: str, modality: str): self.modality = modality self.device = "cuda" if torch.cuda.is_available() else "cpu" config = self._configs()[model_name] self.text_tokenizer = BertTokenizer.from_pretrained(config['tokenizer']) self.text_encoder = BertForSequenceClassification.from_pretrained(config['text_encoder']).eval() self.clip_model = CLIPModel.from_pretrained(config['clip_model']) self.processor = CLIPProcessor.from_pretrained(config['processor']) def inference_single_data(self, data): if self.modality == 'image': vec = self._inference_from_image(data) elif self.modality == 'text': vec = self._inference_from_text(data) else: raise ValueError("modality[{}] not implemented.".format(self._modality)) return vec.detach().cpu().numpy().flatten() def __call__(self, data): if not isinstance(data, list): data = [data] else: data = data results = [] for single_data in data: result = self.inference_single_data(single_data) results.append(result) if len(data) == 1: return results[0] else: return results def _inference_from_text(self, text): tokens = self.text_tokenizer(text, return_tensors='pt', padding=True)['input_ids'].to(self.device) text_features = self.text_encoder(tokens).logits return text_features @arg(1, to_image_color('RGB')) def _inference_from_image(self, img): image = to_pil(img) image = self.processor(images=image, return_tensors="pt") image_features = self.clip_model.get_image_features(**image) return image_features def _configs(self): config = {} config['taiyi-clip-roberta-102m-chinese'] = {} config['taiyi-clip-roberta-102m-chinese']['tokenizer'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-102M-Chinese' config['taiyi-clip-roberta-102m-chinese']['text_encoder'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-102M-Chinese' config['taiyi-clip-roberta-102m-chinese']['clip_model'] = 'openai/clip-vit-base-patch32' config['taiyi-clip-roberta-102m-chinese']['processor'] = 'openai/clip-vit-base-patch32' config['taiyi-clip-roberta-large-326m-chinese'] = {} config['taiyi-clip-roberta-large-326m-chinese']['tokenizer'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese' config['taiyi-clip-roberta-large-326m-chinese']['text_encoder'] = 'IDEA-CCNL/Taiyi-CLIP-Roberta-large-326M-Chinese' config['taiyi-clip-roberta-large-326m-chinese']['clip_model'] = 'openai/clip-vit-large-patch14' config['taiyi-clip-roberta-large-326m-chinese']['processor'] = 'openai/clip-vit-large-patch14' return config