# Chinese Image-Text Retrieval Embdding with Taiyi
*author: David Wang*
## Description
This operator extracts features for image or text(in Chinese) with [Taiyi(太乙)](https://arxiv.org/abs/2209.02970) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This method is developed by [IDEA-CCNL](https://github.com/IDEA-CCNL/Fengshenbang-LM/).
## Code Example
Load an image from path './teddy.jpg' to generate an image embedding.
Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.
*Write the pipeline in simplified style*:
```python
import towhee
towhee.glob('./dog.jpg') \
.image_decode() \
.image_text_embedding.taiyi(model_name='taiyi-clip-roberta-102m-chinese', modality='image') \
.show()
towhee.dc(["一只小狗"]) \
.image_text_embedding.taiyi(model_name='taiyi-clip-roberta-102m-chinese', modality='text') \
.show()
```
*Write a same pipeline with explicit inputs/outputs name specifications:*
```python
import towhee
towhee.glob['path']('./dog.jpg') \
.image_decode['path', 'img']() \
.image_text_embedding.taiyi['img', 'vec'](model_name='taiyi-clip-roberta-102m-chinese', modality='image') \
.select['img', 'vec']() \
.show()
towhee.dc['text'](["一只小狗"]) \
.image_text_embedding.taiyi['text','vec'](model_name='taiyi-clip-roberta-102m-chinese', modality='text') \
.select['text', 'vec']() \
.show()
```
## Factory Constructor
Create the operator via the following factory method
***taiyi(model_name, modality)***
**Parameters:**
***model_name:*** *str*
The model name of Taiyi. Supported model names:
- taiyi-clip-roberta-102m-chinese
- taiyi-clip-roberta-large-326m-chinese
***modality:*** *str*
Which modality(*image* or *text*) is used to generate the embedding.
## Interface
An image-text embedding operator takes a [towhee image](link/to/towhee/image/api/doc) or string as input and generate an embedding in ndarray.
**Parameters:**
***data:*** *towhee.types.Image (a sub-class of numpy.ndarray)* or *str*
The data (image or text based on specified modality) to generate embedding.
**Returns:** *numpy.ndarray*
The data embedding extracted by model.