logo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions

2.5 KiB

Chinese Image-Text Retrieval Embdding with Taiyi

author: David Wang


Description

This operator extracts features for image or text(in Chinese) with Taiyi(太乙) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This method is developed by IDEA-CCNL.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.

Write a pipeline with explicit inputs/outputs name specifications:

from towhee import pipe, ops, DataCollection

img_pipe = (
    pipe.input('url')
    .map('url', 'img', ops.image_decode.cv2_rgb())
    .map('img', 'vec', ops.image_text_embedding.taiyi(model_name='taiyi-clip-roberta-102m-chinese', modality='image'))
    .output('img', 'vec')
)

text_pipe = (
    pipe.input('text')
    .map('text', 'vec', ops.image_text_embedding.taiyi(model_name='taiyi-clip-roberta-102m-chinese', modality='text'))
    .output('text', 'vec')
)

DataCollection(img_pipe('./dog.jpg')).show()
DataCollection(text_pipe('一只小狗')).show()
result1 result2


Factory Constructor

Create the operator via the following factory method

taiyi(model_name, modality)

Parameters:

model_name: str

​ The model name of Taiyi. Supported model names:

  • taiyi-clip-roberta-102m-chinese
  • taiyi-clip-roberta-large-326m-chinese

modality: str

​ Which modality(image or text) is used to generate the embedding.

clip_checkpoint_path: str

​ The weight path to load for the clip branch.

text_checkpoint_path: str

​ The weight path to load for the text branch.

devcice: str

​ The device in string, defaults to None. If None, it will enable "cuda" automatically when cuda is available.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.

2.5 KiB

Chinese Image-Text Retrieval Embdding with Taiyi

author: David Wang


Description

This operator extracts features for image or text(in Chinese) with Taiyi(太乙) which can generate embeddings for text and image by jointly training an image encoder and text encoder to maximize the cosine similarity. This method is developed by IDEA-CCNL.


Code Example

Load an image from path './teddy.jpg' to generate an image embedding.

Read the text 'A teddybear on a skateboard in Times Square.' to generate an text embedding.

Write a pipeline with explicit inputs/outputs name specifications:

from towhee import pipe, ops, DataCollection

img_pipe = (
    pipe.input('url')
    .map('url', 'img', ops.image_decode.cv2_rgb())
    .map('img', 'vec', ops.image_text_embedding.taiyi(model_name='taiyi-clip-roberta-102m-chinese', modality='image'))
    .output('img', 'vec')
)

text_pipe = (
    pipe.input('text')
    .map('text', 'vec', ops.image_text_embedding.taiyi(model_name='taiyi-clip-roberta-102m-chinese', modality='text'))
    .output('text', 'vec')
)

DataCollection(img_pipe('./dog.jpg')).show()
DataCollection(text_pipe('一只小狗')).show()
result1 result2


Factory Constructor

Create the operator via the following factory method

taiyi(model_name, modality)

Parameters:

model_name: str

​ The model name of Taiyi. Supported model names:

  • taiyi-clip-roberta-102m-chinese
  • taiyi-clip-roberta-large-326m-chinese

modality: str

​ Which modality(image or text) is used to generate the embedding.

clip_checkpoint_path: str

​ The weight path to load for the clip branch.

text_checkpoint_path: str

​ The weight path to load for the text branch.

devcice: str

​ The device in string, defaults to None. If None, it will enable "cuda" automatically when cuda is available.


Interface

An image-text embedding operator takes a towhee image or string as input and generate an embedding in ndarray.

Parameters:

data: towhee.types.Image (a sub-class of numpy.ndarray) or str

​ The data (image or text based on specified modality) to generate embedding.

Returns: numpy.ndarray

​ The data embedding extracted by model.