# Animating using AnimeGanV2 *author: Filip Haltmayer* ## Description Convert an image into an animated image using [`AnimeganV2`](https://github.com/TachibanaYoshino/AnimeGANv2). ## Code Example Load an image from path './test.png'. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('/Users/chenshiyu/workspace/data/pic/test.png') \ .image_decode.cv2() \ .img2img_translation.animegan(model_name = 'hayao') \ .show() ``` results1 *Write a same pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('/Users/chenshiyu/workspace/data/pic/test.png') \ .image_decode.cv2['path', 'origin']() \ .img2img_translation.animegan['origin', 'transformed'](model_name = 'hayao') \ .select('origin', 'transformed') \ .show() ``` results1 ## Factory Constructor Create the operator via the following factory method ***img2img_translation.animegan(model_name = 'which anime model to use')*** Model options: - celeba - facepaintv1 - facepaintv2 - hayao - paprika - shinkai ## Interface Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form. **Parameters:** ​ ***model_name***: *str* ​ Which model to use for transfer. ***framework***: *str* ​ Which ML framework being used, for now only supports PyTorch. **Returns**: *numpy.ndarray* ​ The new image. ## Reference Jie Chen, Gang Liu, Xin Chen "AnimeGAN: A Novel Lightweight GAN for Photo Animation." ISICA 2019: Artificial Intelligence Algorithms and Applications pp 242-256, 2019.