# Cartoonize with CartoonGAN *author: Shiyu*
## Description Convert an image into an cartoon image using [`CartoonGAN`](https://github.com/Yijunmaverick/CartoonGAN-Test-Pytorch-Torch).
## Code Example Load an image from path './test.png'. *Write the pipeline in simplified style*: ```python import towhee towhee.glob('./test.png') \ .image_decode() \ .img2img_translation.animegan(model_name = 'hayao') \ .show() ``` *Write a pipeline with explicit inputs/outputs name specifications:* ```python import towhee towhee.glob['path']('./test.png') \ .image_decode['path', 'origin']() \ .img2img_translation.cartoongan['origin', 'hayao'](model_name = 'Hayao') \ .img2img_translation.cartoongan['origin', 'hosoda'](model_name = 'Hosoda') \ .img2img_translation.cartoongan['origin', 'paprika'](model_name = 'Paprika') \ .img2img_translation.cartoongan['origin', 'shinkai'](model_name = 'Shinkai') \ .select['origin', 'hayao', 'hosoda', 'paprika', 'shinkai']() \ .show() ``` results1
## Factory Constructor Create the operator via the following factory method ***img2img_translation.cartoongan(model_name = 'which anime model to use')*** Model options: - Hayao - Hosoda - Paprika - Shinkai
## Interface Takes in a numpy rgb image in channels first. It transforms input into animated image in numpy form. **Parameters:** ​ ***model_name***: *str* ​ Which model to use for transfer. ***framework***: *str* ​ Which ML framework being used, for now only supports PyTorch. ***device***: *str* ​ Which device being used('cpu' or 'cuda'), defaults to 'cpu'. **Returns**: *towhee.types.Image (a sub-class of numpy.ndarray)* ​ The new image.