copied
Readme
Files and versions
Updated 2 years ago
machine-translation
Machine Translation with Opus-MT
author: David Wang
Description
A machine translation operator translates a sentence, paragraph, or document from source language to the target language. This operator is trained on OPUS data by Helsinki-NLP. More detail can be found in Helsinki-NLP/Opus-MT .
Code Example
Use the pre-trained model 'opus-mt-en-zh' to generate the Chinese translation for the sentence "Hello, world.".
Write the pipeline:
import towhee
(
towhee.dc(["Hello, world."])
.machine_translation.opus_mt(model_name="opus-mt-en-zh")
)
Write a same pipeline with explicit inputs/outputs name specifications:
import towhee
(
towhee.dc['text'](["Hello, world."])
.machine_translation.opus_mt['text', 'vec'](model_name="opus-mt-en-zh")
.show()
)
Factory Constructor
Create the operator via the following factory method:
machine_translatioin.opus_mt(model_name="opus-mt-en-zh")
Parameters:
model_name: str
The model name in string. The default model name is "opus-mt-en-zh".
Supported model names:
- opus-mt-en-zh
- opus-mt-zh-en
Interface
The operator takes a piece of text in string as input. It loads tokenizer and pre-trained model using model name. and then return translated text in string.
call(text)
Parameters:
text: str
The source language text in string.
Returns:
str
The target language text.
wxywb
5184a1f49f
| 6 Commits | ||
---|---|---|---|
.gitattributes |
1.1 KiB
|
2 years ago | |
README.md |
1.6 KiB
|
2 years ago | |
__init__.py |
700 B
|
2 years ago | |
opus_mt.py |
2.7 KiB
|
2 years ago | |
requirements.txt |
52 B
|
2 years ago | |
result.png |
12 KiB
|
2 years ago |