diff --git a/README.md b/README.md
index 8a698d8..be7853b 100644
--- a/README.md
+++ b/README.md
@@ -22,37 +22,40 @@ This operator uses [PyTorch.yolov5](https://pytorch.org/hub/ultralytics_yolov5/)
### Code Example
+Load an image from path './test.png' and use yolov5 model to detect objects in the image.
+*Write a same pipeline with explicit inputs/outputs name specifications:*
-- Write the pipeline in the simplified way:
-
+- **option 1: towhee>=0.9.0**
```Python
-import towhee
-
-towhee.glob('./test.png') \
- .image_decode() \
- .object_detection.yolov5() \
- .show()
-```
+from towhee.dc2 import pipe, ops, DataCollection
-
+p = (
+ pipe.input('path')
+ .map('path', 'img', ops.image_decode())
+ .map('img', ('box', 'class', 'score'), ops.object_detection.yolov5())
+ .map(('img', 'box'), 'object', ops.image_crop(clamp=True))
+ .output('img', 'object', 'class')
+)
-- Write the same pipeline with explicitly specified inputs and outputs:
+DataCollection(p('./test.png')).show()
+```
-```Python
+- **option 2:**
+```python
import towhee
-towhee.glob['path']('./test.png') \
- .image_decode['path','img']() \
- .object_detection.yolov5['img', ('box', 'class', 'score')]() \
- .image_crop[('img', 'box'), 'object'](clamp = True) \
- .select['img','object']() \
- .show()
+(
+ towhee.glob['path']('./test.png')
+ .image_decode['path','img']()
+ .object_detection.yolov5['img', ('box', 'class', 'score')]()
+ .image_crop[('img', 'box'), 'object'](clamp = True)
+ .select['img','object', 'class']()
+ .show()
+)
```
-
-
-
+
diff --git a/result.png b/result.png
new file mode 100644
index 0000000..26633f2
Binary files /dev/null and b/result.png differ
diff --git a/results1.png b/results1.png
deleted file mode 100644
index d21fd20..0000000
Binary files a/results1.png and /dev/null differ
diff --git a/results2.png b/results2.png
deleted file mode 100644
index cddb8ec..0000000
Binary files a/results2.png and /dev/null differ