import torch import numpy import logging from towhee import register from towhee.operator import NNOperator logging.getLogger("yolov5").setLevel(logging.WARNING) @register(output_schema=['boxes', 'classes', 'scores']) class Yolov5(NNOperator): def __init__(self, model_name: str ='yolov5s'): super().__init__() self._model = torch.hub.load("ultralytics/yolov5", model_name, pretrained=True, verbose=False) def __call__(self, img: numpy.ndarray): # Get object detection results with YOLOv5 model results = self._model(img) boxes = [re[0:4] for re in results.xyxy[0]] boxes = [list(map(int, box)) for box in boxes] classes = list(results.pandas().xyxy[0].name) scores = list(results.pandas().xyxy[0].confidence) return boxes, classes, scores