copied
Readme
Files and versions
Updated 2 years ago
sentence-embedding
Sentence Embedding with OpenAI
author: Junjie, Jael
Description
A sentence embedding operator generates one embedding vector in ndarray for each input text. The embedding represents the semantic information of the whole input text as one vector. This operator is implemented with embedding models from OpenAI. Please note you need an OpenAI API key to access OpenAI.
Code Example
Use the pre-trained model '' to generate an embedding for the sentence "Hello, world.".
Write a pipeline with explicit inputs/outputs name specifications:
from towhee import pipe, ops, DataCollection
p = (
pipe.input('text')
.map('text', 'vec',
ops.sentence_embedding.openai(model_name='text-embedding-ada-002', api_key=OPENAI_API_KEY))
.output('text', 'vec')
)
DataCollection(p('Hello, world.')).show()
Factory Constructor
Create the operator via the following factory method:
sentence_embedding.openai(model_name='text-embedding-ada-002')
Parameters:
model_name: str
The model name in string, defaults to 'text-embedding-ada-002'. Supported model names:
- text-embedding-ada-002
- text-similarity-davinci-001
- text-similarity-curie-001
- text-similarity-babbage-001
- text-similarity-ada-001
api_key: str=None
The OpenAI API key in string, defaults to None.
Interface
The operator takes a piece of text in string as input. It returns a text emabedding in numpy.ndarray.
__call__(txt)
Parameters:
text: str
The text in string.
Returns:
numpy.ndarray or list
The text embedding extracted by model.
supported_model_names()
Get a list of supported model names.
| 4 Commits | ||
---|---|---|---|
|
1.1 KiB
|
2 years ago | |
|
1.8 KiB
|
2 years ago | |
|
118 B
|
2 years ago | |
|
1.6 KiB
|
2 years ago | |
|
7 B
|
2 years ago |