# Sentence Embedding with Sentence Transformers *author: [Jael Gu](https://github.com/jaelgu)*
## Description This operator takes a sentence or a list of sentences in string as input. It generates an embedding vector in numpy.ndarray for each sentence, which captures the input sentence's core semantic elements. This operator is implemented with pre-trained models from [Sentence Transformers](https://www.sbert.net/).
## Code Example Use the pre-trained model "all-MiniLM-L12-v2" to generate a text embedding for the sentence "This is a sentence.". *Write a same pipeline with explicit inputs/outputs name specifications:* - **option 1 (towhee>=0.9.0):** ```python from towhee.dc2 import pipe, ops, DataCollection p = ( pipe.input('sentence') .map('sentence', 'vec', ops.sentence_embedding.sbert(model_name='all-MiniLM-L12-v2')) .output('sentence', 'vec') ) DataCollection(p('This is a sentence.')).show() ``` - **option 2:** ```python import towhee ( towhee.dc['sentence'](['This is a sentence.']) .sentence_embedding.sbert['sentence', 'vec'](model_name='all-MiniLM-L12-v2') .show() ) ```
## Factory Constructor Create the operator via the following factory method: ***text_embedding.sbert(model_name='all-MiniLM-L12-v2')*** **Parameters:** ***model_name***: *str* The model name in string. Supported model names: Refer to [SBert Doc](https://www.sbert.net/docs/pretrained_models.html). Please note that only models listed `supported_model_names` are tested. You can refer to [Towhee Pipeline]() for model performance. ***device***: *str* The device to run model, defaults to None. If None, it will use 'cuda' automatically when cuda is available.
## Interface The operator takes a sentence or a list of sentences in string as input. It loads tokenizer and pre-trained model using model name, and then returns text embedding in numpy.ndarray. ***__call__(txt)*** **Parameters:** ***txt***: *Union[List[str], str]* ​ A sentence or a list of sentences in string. **Returns**: *Union[List[numpy.ndarray], numpy.ndarray]* ​ If input is a sentence in string, then it returns an embedding vector of shape (dim,) in numpy.ndarray. If input is a list of sentences, then it returns a list of embedding vectors, each of which a numpy.ndarray in shape of (dim,).
***supported_model_names(format=None)*** Get a list of all supported model names or supported model names for specified model format. **Parameters:** ***format***: *str* ​ The model format such as 'pytorch', defaults to None. If None, it will return a full list of supported model names. ```python from towhee import ops op = ops.sentence_embedding.sentence_transformers().get_op() full_list = op.supported_model_names() onnx_list = op.supported_model_names(format='onnx') ```