logo
Browse Source

Add files

Signed-off-by: Jael Gu <mengjia.gu@zilliz.com>
main
Jael Gu 2 years ago
parent
commit
b56e5e1fa4
  1. 149
      README.md
  2. 19
      __init__.py
  3. 256
      auto_transformers.py
  4. 7
      requirements.txt
  5. BIN
      result.png
  6. 105
      test_onnx.py

149
README.md

@ -1,2 +1,149 @@
# transformers
# Sentence Embedding with Transformers
*author: [Jael Gu](https://github.com/jaelgu)*
<br />
## Description
A sentence embedding operator generates one embedding vector in ndarray for each input text.
The embedding represents the semantic information of the whole input text as one vector.
This operator is implemented with pre-trained models from [Huggingface Transformers](https://huggingface.co/docs/transformers).
<br />
## Code Example
Use the pre-trained model 'sentence-transformers/paraphrase-albert-small-v2'
to generate an embedding for the sentence "Hello, world.".
*Write a same pipeline with explicit inputs/outputs name specifications:*
- **option 1 (towhee>=0.9.0):**
```python
from towhee.dc2 import pipe, ops, DataCollection
p = (
pipe.input('text')
.map('text', 'vec',
ops.sentence_embedding.transformers(model_name='sentence-transformers/paraphrase-albert-small-v2'))
.output('text', 'vec')
)
DataCollection(p('Hello, world.')).show()
```
<img src="./result.png" width="800px"/>
- **option 2:**
```python
import towhee
(
towhee.dc['text'](['Hello, world.'])
.sentence_embedding.transformers['text', 'vec'](
model_name='sentence-transformers/paraphrase-albert-small-v2')
.show()
)
```
<br />
## Factory Constructor
Create the operator via the following factory method:
***sentence_embedding.transformers(model_name=None)***
**Parameters:**
***model_name***: *str*
The model name in string, defaults to None.
If None, the operator will be initialized without specified model.
Supported model names: refer to `supported_model_names` below.
***checkpoint_path***: *str*
The path to local checkpoint, defaults to None.
If None, the operator will download and load pretrained model by `model_name` from Huggingface transformers.
<br />
***tokenizer***: *object*
The method to tokenize input text, defaults to None.
If None, the operator will use default tokenizer by `model_name` from Huggingface transformers.
<br />
## Interface
The operator takes a piece of text in string as input.
It loads tokenizer and pre-trained model using model name,
and then return a text emabedding in numpy.ndarray.
***\_\_call\_\_(txt)***
**Parameters:**
***data***: *Union[str, list]*
​ The text in string or a list of texts.
**Returns**:
*numpy.ndarray or list*
​ The text embedding (or token embeddings) extracted by model.
If `data` is string, the operator returns an embedding in numpy.ndarray with shape of (dim,).
If `data` is a list, the operator returns a list of embedding(s) with length of input list.
<br />
***save_model(format='pytorch', path='default')***
Save model to local with specified format.
**Parameters:**
***format***: *str*
​ The format to export model as, such as 'pytorch', 'torchscript', 'onnx',
defaults to 'pytorch'.
***path***: *str*
​ The path where exported model is saved to.
By default, it will save model to `saved` directory under the operator cache.
```python
from towhee import ops
op = ops.sentence_embedding.transformers(model_name='sentence-transformers/paraphrase-albert-small-v2').get_op()
op.save_model('onnx', 'test.onnx')
```
PosixPath('/Home/.towhee/operators/sentence-embedding/transformers/main/test.onnx')
<br />
***supported_model_names(format=None)***
Get a list of all supported model names or supported model names for specified model format.
**Parameters:**
***format***: *str*
​ The model format such as 'pytorch', 'torchscript', 'onnx'.
```python
from towhee import ops
op = ops.sentence_embedding.transformers().get_op()
full_list = op.supported_model_names()
onnx_list = op.supported_model_names(format='onnx')
```

19
__init__.py

@ -0,0 +1,19 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .auto_transformers import AutoTransformers
def transformers(*args, **kwargs):
return AutoTransformers(*args, **kwargs)

256
auto_transformers.py

@ -0,0 +1,256 @@
# Copyright 2021 Zilliz. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy
import os
import torch
import shutil
from pathlib import Path
from typing import Union
from collections import OrderedDict
from transformers import AutoModel
from towhee.operator import NNOperator
from towhee import register
# from towhee.dc2 import accelerate
import warnings
import logging
from transformers import logging as t_logging
log = logging.getLogger('run_op')
warnings.filterwarnings('ignore')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
t_logging.set_verbosity_error()
# @accelerate
class Model:
def __init__(self, model):
self.model = model
def __call__(self, *args, **kwargs):
outs = self.model(*args, **kwargs, return_dict=True)
return outs['last_hidden_state']
@register(output_schema=['vec'])
class AutoTransformers(NNOperator):
"""
NLP embedding operator that uses the pretrained transformers model gathered by huggingface.
Args:
model_name (`str`):
The model name to load a pretrained model from transformers.
checkpoint_path (`str`):
The local checkpoint path.
tokenizer (`object`):
The tokenizer to tokenize input text as model inputs.
"""
def __init__(self,
model_name: str = None,
checkpoint_path: str = None,
tokenizer: object = None,
device: str = None,
norm: bool = False
):
super().__init__()
self._device = device
self.model_name = model_name
self.user_tokenizer = tokenizer
self.norm = norm
self.checkpoint_path = checkpoint_path
if self.model_name:
model_list = self.supported_model_names()
# assert model_name in model_list, f"Invalid model name: {model_name}. Supported model names: {model_list}"
self.model = Model(self._model)
else:
log.warning('The operator is initialized without specified model.')
pass
def __call__(self, data: Union[str, list]) -> numpy.ndarray:
if isinstance(data, str):
txt = [data]
else:
txt = data
try:
inputs = self.tokenizer(txt, padding=True, truncation=True, return_tensors='pt').to(self.device)
except Exception as e:
log.error(f'Fail to tokenize inputs: {e}')
raise e
try:
outs = self.model(**inputs)
except Exception as e:
log.error(f'Invalid input for the model: {self.model_name}')
raise e
outs = self.post_proc(outs, inputs)
if self.norm:
outs = torch.nn.functional.normalize(outs, )
features = outs.cpu().detach().numpy()
if isinstance(data, str):
features = features.squeeze(0)
else:
features = list(features)
return features
@property
def _model(self):
model = AutoModel.from_pretrained(self.model_name).to(self.device)
if hasattr(model, 'pooler') and model.pooler:
model.pooler = None
if self.checkpoint_path:
try:
state_dict = torch.load(self.checkpoint_path, map_location=self.device)
model.load_state_dict(state_dict)
except Exception:
log.error(f'Fail to load weights from {self.checkpoint_path}')
model.eval()
return model
@property
def device(self):
if self._device is None:
if self._device_id < 0:
self._device = torch.device('cpu')
else:
self._device = torch.device(self._device_id)
return self._device
@property
def model_config(self):
from transformers import AutoConfig
configs = AutoConfig.from_pretrained(self.model_name)
return configs
@property
def onnx_config(self):
from transformers.onnx.features import FeaturesManager
model_kind, model_onnx_config = FeaturesManager.check_supported_model_or_raise(
self._model, feature='default')
old_config = model_onnx_config(self.model_config)
onnx_config = {
'inputs': dict(old_config.inputs),
'outputs': {'last_hidden_state': old_config.outputs['last_hidden_state']}
}
return onnx_config
@property
def tokenizer(self):
from transformers import AutoTokenizer
try:
if self.user_tokenizer:
t = tokenizer
else:
t = AutoTokenizer.from_pretrained(self.model_name)
if not t.pad_token:
t.pad_token = '[PAD]'
except Exception as e:
log.error(f'Fail to load tokenizer.')
raise e
return t
def post_proc(self, token_embeddings, inputs):
token_embeddings = token_embeddings.to(self.device)
attention_mask = inputs['attention_mask'].to(self.device)
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
sentence_embs = torch.sum(
token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
return sentence_embs
def save_model(self, model_type: str = 'pytorch', output_file: str = 'default'):
if output_file == 'default':
output_file = str(Path(__file__).parent)
output_file = os.path.join(output_file, 'saved', model_type)
os.makedirs(output_file, exist_ok=True)
name = self.model_name.replace('/', '-')
output_file = os.path.join(output_file, name)
if model_type in ['pytorch', 'torchscript']:
output_file = output_file + '.pt'
elif model_type == 'onnx':
output_file = output_file + '.onnx'
else:
raise AttributeError('Unsupported model_type.')
dummy_input = 'test sentence'
inputs = self.tokenizer(dummy_input, padding=True, truncation=True, return_tensors='pt') # a dictionary
if model_type == 'pytorch':
torch.save(self._model, output_file)
elif model_type == 'torchscript':
inputs = list(inputs.values())
try:
try:
jit_model = torch.jit.script(self._model)
except Exception:
jit_model = torch.jit.trace(self._model, inputs, strict=False)
torch.jit.save(jit_model, output_file)
except Exception as e:
log.error(f'Fail to save as torchscript: {e}.')
raise RuntimeError(f'Fail to save as torchscript: {e}.')
elif model_type == 'onnx':
dynamic_axes = {}
for k, v in self.onnx_config['inputs'].items():
dynamic_axes[k] = v
for k, v in self.onnx_config['outputs'].items():
dynamic_axes[k] = v
torch.onnx.export(
self._model,
tuple(inputs.values()),
output_file,
input_names=list(self.onnx_config['inputs'].keys()),
output_names=list(self.onnx_config['outputs'].keys()),
dynamic_axes=dynamic_axes,
opset_version=torch.onnx.constant_folding_opset_versions[-1],
do_constant_folding=True,
)
# todo: elif format == 'tensorrt':
else:
log.error(f'Unsupported format "{format}".')
return Path(output_file).resolve()
@property
def supported_formats(self):
onnxes = self.supported_model_names(format='onnx')
if self.model_name in onnxes:
return ['onnx']
else:
return ['pytorch']
@staticmethod
def supported_model_names(format: str = None):
full_list = [
]
full_list.sort()
if format is None:
model_list = full_list
elif format == 'pytorch':
to_remove = []
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
elif format == 'torchscript':
to_remove = [
]
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
elif format == 'onnx':
to_remove = [
]
assert set(to_remove).issubset(set(full_list))
model_list = list(set(full_list) - set(to_remove))
# todo: elif format == 'tensorrt':
else:
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
return model_list

7
requirements.txt

@ -0,0 +1,7 @@
numpy
transformers
sentencepiece
protobuf
towhee
torch

BIN
result.png

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.7 KiB

105
test_onnx.py

@ -0,0 +1,105 @@
from towhee import ops
import torch
import numpy
import onnx
import onnxruntime
import os
from pathlib import Path
import logging
import platform
import psutil
import warnings
from transformers import logging as t_logging
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
warnings.filterwarnings("ignore")
t_logging.set_verbosity_error()
# full_models = AutoTransformers.supported_model_names()
# checked_models = AutoTransformers.supported_model_names(format='onnx')
# models = [x for x in full_models if x not in checked_models]
models = ['distilbert-base-cased', 'sentence-transformers/paraphrase-albert-small-v2']
test_txt = 'hello, world.'
atol = 1e-3
log_path = 'transformers_onnx.log'
f = open('onnx.csv', 'w+')
f.write('model,load_op,save_onnx,check_onnx,run_onnx,accuracy\n')
logger = logging.getLogger('transformers_onnx')
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh = logging.FileHandler(log_path)
fh.setLevel(logging.DEBUG)
fh.setFormatter(formatter)
logger.addHandler(fh)
ch = logging.StreamHandler()
ch.setLevel(logging.ERROR)
ch.setFormatter(formatter)
logger.addHandler(ch)
logger.debug(f'machine: {platform.platform()}-{platform.processor()}')
logger.debug(f'free/available/total mem: {round(psutil.virtual_memory().free / (1024.0 ** 3))}'
f'/{round(psutil.virtual_memory().available / (1024.0 ** 3))}'
f'/{round(psutil.virtual_memory().total / (1024.0 ** 3))} GB')
logger.debug(f'cpu: {psutil.cpu_count()}')
status = None
for name in models:
logger.info(f'***{name}***')
saved_name = name.replace('/', '-')
onnx_path = f'saved/onnx/{saved_name}.onnx'
if status:
f.write(','.join(status) + '\n')
status = [name] + ['fail'] * 5
try:
op = ops.sentence_embedding.transformers(model_name=name).get_op()
out1 = op(test_txt)
logger.info('OP LOADED.')
status[1] = 'success'
except Exception as e:
logger.error(f'FAIL TO LOAD OP: {e}')
continue
try:
op.save_model(model_type='onnx')
logger.info('ONNX SAVED.')
status[2] = 'success'
except Exception as e:
logger.error(f'FAIL TO SAVE ONNX: {e}')
continue
try:
try:
onnx_model = onnx.load(onnx_path)
onnx.checker.check_model(onnx_model)
except Exception:
saved_onnx = onnx.load(onnx_path, load_external_data=False)
onnx.checker.check_model(saved_onnx)
logger.info('ONNX CHECKED.')
status[3] = 'success'
except Exception as e:
logger.error(f'FAIL TO CHECK ONNX: {e}')
continue
try:
sess = onnxruntime.InferenceSession(onnx_path,
providers=onnxruntime.get_available_providers())
inputs = op.tokenizer(test_txt, return_tensors='np')
out2 = sess.run(output_names=['last_hidden_state'], input_feed=dict(inputs))[0]
new_inputs = op.tokenizer(test_txt, return_tensors='pt')
out2 = op.post_proc(torch.from_numpy(out2), new_inputs)
logger.info('ONNX WORKED.')
status[4] = 'success'
if numpy.allclose(out1, out2, atol=atol):
logger.info('Check accuracy: OK')
status[5] = 'success'
else:
logger.info(f'Check accuracy: atol is larger than {atol}.')
except Exception as e:
logger.error(f'FAIL TO RUN ONNX: {e}')
continue
if status:
f.write(','.join(status) + '\n')
print('Finished.')
Loading…
Cancel
Save