logo
ChengZi 1 year ago
parent
commit
ce5e146751
  1. 38
      auto_transformers.py
  2. 420
      train_clm_with_hf_trainer.py
  3. 458
      train_mlm_with_hf_trainer.py

38
auto_transformers.py

@ -21,7 +21,7 @@ from pathlib import Path
from typing import Union
from collections import OrderedDict
from transformers import AutoTokenizer, AutoConfig, AutoModel
from transformers import AutoTokenizer, AutoConfig, AutoModel, AutoModelForMaskedLM, AutoModelForCausalLM
from towhee.operator import NNOperator
from towhee import register
@ -31,6 +31,9 @@ import warnings
import logging
from transformers import logging as t_logging
from .train_mlm_with_hf_trainer import train_mlm_with_hf_trainer
from .train_clm_with_hf_trainer import train_clm_with_hf_trainer
log = logging.getLogger('run_op')
warnings.filterwarnings('ignore')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
@ -263,6 +266,39 @@ class AutoTransformers(NNOperator):
log.error(f'Invalid format "{format}". Currently supported formats: "pytorch", "torchscript".')
return model_list
def train(self, training_config=None,
train_dataset=None,
eval_dataset=None,
resume_checkpoint_path=None, **kwargs):
task = kwargs.pop('task', None)
data_args = kwargs.pop('data_args', None)
training_args = kwargs.pop('training_args', None)
prepare_model_weights_f = kwargs.pop('prepare_model_weights_f', None)
if task == 'mlm' or task is None:
model_with_head = AutoModelForMaskedLM.from_pretrained(self.model_name)
if prepare_model_weights_f is not None:
model_with_head = prepare_model_weights_f(self._model, model_with_head, **kwargs)
train_mlm_with_hf_trainer(
model_with_head,
self.tokenizer,
data_args,
training_args,
**kwargs
)
elif task == 'clm':
model_with_head = AutoModelForCausalLM.from_pretrained(self.model_name)
if prepare_model_weights_f is not None:
model_with_head = prepare_model_weights_f(self._model, model_with_head, **kwargs)
train_clm_with_hf_trainer(
model_with_head,
self.tokenizer,
data_args,
training_args,
**kwargs
)
s_list = [
'paraphrase-MiniLM-L3-v2',

420
train_clm_with_hf_trainer.py

@ -0,0 +1,420 @@
# This script is hacked and modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py
# For more specified training tasks, please refer https://github.com/huggingface/transformers/tree/main/examples/pytorch
import dataclasses
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import transformers
from transformers import (
MODEL_FOR_CAUSAL_LM_MAPPING,
TrainingArguments,
default_data_collator,
is_torch_tpu_available,
set_seed,
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def dataclass_from_dict(klass, d):
try:
fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)}
return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d})
except:
return d # Not a dataclass field
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def train_clm_with_hf_trainer(model,
tokenizer,
data_args,
training_args,
**kwargs):
import evaluate
import datasets
from transformers import Trainer
from datasets import load_dataset
from towhee.trainer.training_config import get_dataclasses_help
print('train clm with hugging face transformers trainer')
print('**** DataTrainingArguments ****')
get_dataclasses_help(DataTrainingArguments)
data_args = dataclass_from_dict(DataTrainingArguments, data_args)
print('**** TrainingArguments ****')
get_dataclasses_help(TrainingArguments)
training_args = dataclass_from_dict(TrainingArguments, training_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
dataset_args = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = (
data_args.train_file.split(".")[-1]
if data_args.train_file is not None
else data_args.validation_file.split(".")[-1]
)
if extension == "txt":
extension = "text"
dataset_args["keep_linebreaks"] = data_args.keep_linebreaks
raw_datasets = load_dataset(
extension,
data_files=data_files,
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
**dataset_args,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
**dataset_args,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
**dataset_args,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
else:
column_names = raw_datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples[text_column_name])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --block_size xxx."
)
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i: i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result # 2318 * 1024, dict(input_ids=[[token1, token2, ...token1024], ...], attention_mask=[[...], ....], labels=[[...],...])
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a remainder
# for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value might be slower
# to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with training_args.main_process_first(desc="grouping texts together"):
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {block_size}",
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = lm_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = lm_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return metric.compute(predictions=preds, references=labels)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
# Data collator will default to DataCollatorWithPadding, so we change it.
data_collator=default_data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
print('done clm.')

458
train_mlm_with_hf_trainer.py

@ -0,0 +1,458 @@
# This script is hacked and modified from https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_mlm.py
# For more specified training tasks, please refer https://github.com/huggingface/transformers/tree/main/examples/pytorch
import dataclasses
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional
import transformers
from transformers import (
MODEL_FOR_MASKED_LM_MAPPING,
DataCollatorForLanguageModeling,
TrainingArguments,
is_torch_tpu_available,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
logger = logging.getLogger(__name__)
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def dataclass_from_dict(klass, d):
try:
fieldtypes = {f.name: f.type for f in dataclasses.fields(klass)}
return klass(**{f: dataclass_from_dict(fieldtypes[f], d[f]) for f in d})
except:
return d # Not a dataclass field
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[int] = field(
default=5,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
max_seq_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated."
)
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
mlm_probability: float = field(
default=0.15, metadata={"help": "Ratio of tokens to mask for masked language modeling loss"}
)
line_by_line: bool = field(
default=False,
metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`train_file` should be a csv, a json or a txt file.")
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
if extension not in ["csv", "json", "txt"]:
raise ValueError("`validation_file` should be a csv, a json or a txt file.")
def train_mlm_with_hf_trainer(model,
tokenizer,
data_args,
training_args,
**kwargs):
import evaluate
import datasets
from transformers import Trainer
from datasets import load_dataset
from towhee.trainer.training_config import get_dataclasses_help
print('train mlm with hugging face transformers trainer')
print('**** DataTrainingArguments ****')
get_dataclasses_help(DataTrainingArguments)
data_args = dataclass_from_dict(DataTrainingArguments, data_args)
print('**** TrainingArguments ****')
get_dataclasses_help(TrainingArguments)
training_args = dataclass_from_dict(TrainingArguments, training_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
logger.info(f"Training/evaluation parameters {training_args}")
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub
#
# For CSV/JSON files, this script will use the column called 'text' or the first column. You can easily tweak this
# behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[:{data_args.validation_split_percentage}%]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["train"] = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
split=f"train[{data_args.validation_split_percentage}%:]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if extension == "txt":
extension = "text"
raw_datasets = load_dataset(
extension,
data_files=data_files,
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
# If no validation data is there, validation_split_percentage will be used to divide the dataset.
if "validation" not in raw_datasets.keys():
raw_datasets["validation"] = load_dataset(
extension,
data_files=data_files,
split=f"train[:{data_args.validation_split_percentage}%]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
raw_datasets["train"] = load_dataset(
extension,
data_files=data_files,
split=f"train[{data_args.validation_split_percentage}%:]",
# cache_dir=model_args.cache_dir,
# use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
else:
column_names = raw_datasets["validation"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
if data_args.max_seq_length is None:
max_seq_length = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
f"The tokenizer picked seems to have a very large `model_max_length` ({tokenizer.model_max_length}). "
"Picking 1024 instead. You can change that default value by passing --max_seq_length xxx."
)
max_seq_length = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
if data_args.line_by_line:
# When using line_by_line, we just tokenize each nonempty line.
padding = "max_length" if data_args.pad_to_max_length else False
def tokenize_function(examples):
# Remove empty lines
examples[text_column_name] = [
line for line in examples[text_column_name] if len(line) > 0 and not line.isspace()
]
return tokenizer(
examples[text_column_name],
padding=padding,
truncation=True,
max_length=max_seq_length,
# We use this option because DataCollatorForLanguageModeling (see below) is more efficient when it
# receives the `special_tokens_mask`.
return_special_tokens_mask=True,
)
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset line_by_line",
)
else:
# Otherwise, we tokenize every text, then concatenate them together before splitting them in smaller parts.
# We use `return_special_tokens_mask=True` because DataCollatorForLanguageModeling (see below) is more
# efficient when it receives the `special_tokens_mask`.
def tokenize_function(examples):
return tokenizer(examples[text_column_name], return_special_tokens_mask=True)
with training_args.main_process_first(desc="dataset map tokenization"):
tokenized_datasets = raw_datasets.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on every text in dataset",
)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of
# max_seq_length.
def group_texts(examples): # examples: 1000 * (about 50~500) = total_length
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= max_seq_length: # max_seq_length = 512
total_length = (total_length // max_seq_length) * max_seq_length
# Split by chunks of max_len.
result = {
k: [t[i: i + max_seq_length] for i in range(0, total_length, max_seq_length)]
for k, t in concatenated_examples.items()
}
return result # 573 * 512 = 293376 = total_length, dict(input_ids=[[token1, token2, ...token512], ...], token_type_ids=[[...],...], attention_mask=[[...],...], special_tkens_mask=[[...],...])
# Note that with `batched=True`, this map processes 1,000 texts together, so group_texts throws away a
# remainder for each of those groups of 1,000 texts. You can adjust that batch_size here but a higher value
# might be slower to preprocess.
#
# To speed up this part, we use multiprocessing. See the documentation of the map method for more information:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.map
with training_args.main_process_first(desc="grouping texts together"):
tokenized_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=not data_args.overwrite_cache,
desc=f"Grouping texts in chunks of {max_seq_length}",
)
if training_args.do_train:
if "train" not in tokenized_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = tokenized_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval:
if "validation" not in tokenized_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = tokenized_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
metric = evaluate.load("accuracy")
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics
labels = labels.reshape(-1)
preds = preds.reshape(-1)
mask = labels != -100
labels = labels[mask]
preds = preds[mask]
return metric.compute(predictions=preds, references=labels)
# Data collator
# This one will take care of randomly masking the tokens.
pad_to_multiple_of_8 = data_args.line_by_line and training_args.fp16 and not data_args.pad_to_max_length
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm_probability=data_args.mlm_probability,
pad_to_multiple_of=8 if pad_to_multiple_of_8 else None,
)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
print('done mlm.')
Loading…
Cancel
Save