# Evaluation ## Model performance in sentence similarity 1. Download SentEval & test data ```bash git clone https://github.com/facebookresearch/SentEval.git cd SentEval/data/downstream ./get_transfer_data.bash ``` 2. Run test script ```bash python evaluate.py MODEL_NAME ``` ## QPS Test Please note that `qps_test.py` uses: - `localhost:8000`: to connect triton client - `'Hello, world.''`: as test sentence ```bash python qps_test --model paraphrase-albert-small-v2 --pipe --onnx --triton --num 100 ``` **Args:** - `--model`: mandatory, string, model name - `--pipe`: optional, on/off flag to enable qps test for pipe - `--onnx`: optional, on/off flag to enable qps test for onnx - `--triton`: optional, on/off flag to enable qps for triton (please make sure that triton client is ready) - `--num`: optional, integer, defaults to 100, batch size in each loop (10 loops in total) - `--device`: optional, int, defaults to -1, cuda index or use cpu when -1