transformers
copied
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Readme
Files and versions
71 lines
2.0 KiB
71 lines
2.0 KiB
# Copyright (c) 2017-present, Facebook, Inc.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
#
|
|
|
|
"""
|
|
Clone GenSen repo here: https://github.com/Maluuba/gensen.git
|
|
And follow instructions for loading the model used in batcher
|
|
"""
|
|
|
|
from __future__ import absolute_import, division, unicode_literals
|
|
|
|
import sys
|
|
import logging
|
|
import numpy as np
|
|
from towhee import ops
|
|
from statistics import mean
|
|
|
|
import os
|
|
import warnings
|
|
from transformers import logging as t_logging
|
|
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
|
|
warnings.filterwarnings("ignore")
|
|
t_logging.set_verbosity_error()
|
|
|
|
model_name = sys.argv[-1]
|
|
op = ops.sentence_embedding.transformers(model_name=model_name, device='cuda:3').get_op()
|
|
# op = ops.text_embedding.sentence_transformers(model_name=model_name, device='cuda:3').get_op()
|
|
|
|
# Set PATHs
|
|
PATH_TO_SENTEVAL = '../'
|
|
PATH_TO_DATA = '../data'
|
|
|
|
# import SentEval
|
|
sys.path.insert(0, PATH_TO_SENTEVAL)
|
|
import senteval
|
|
|
|
# SentEval prepare and batcher
|
|
def prepare(params, samples):
|
|
return
|
|
|
|
def batcher(params, batch):
|
|
batch = [' '.join(sent) if sent != [] else '.' for sent in batch]
|
|
embeddings = op(batch)
|
|
return np.vstack(embeddings)
|
|
|
|
# Set params for SentEval
|
|
params_senteval = {'task_path': PATH_TO_DATA, 'usepytorch': True, 'kfold': 10}
|
|
params_senteval['classifier'] = {'nhid': 0, 'optim': 'adam', 'batch_size': 64,
|
|
'tenacity': 5, 'epoch_size': 4}
|
|
|
|
# Set up logger
|
|
logging.basicConfig(format='%(asctime)s : %(message)s', level=logging.DEBUG)
|
|
|
|
if __name__ == "__main__":
|
|
se = senteval.engine.SE(params_senteval, batcher, prepare)
|
|
# transfer_tasks = ['STSBenchmark']
|
|
# transfer_tasks = ['STS16']
|
|
transfer_tasks = ['STS12', 'STS13', 'STS14', 'STS15', 'STS16']
|
|
results = se.eval(transfer_tasks)
|
|
p = []
|
|
s = []
|
|
for t in transfer_tasks:
|
|
res = results[t]['all']
|
|
p.append(res['pearson']['mean'])
|
|
s.append(res['spearman']['mean'])
|
|
print('pearson:', mean(p))
|
|
print('spearman:', mean(s))
|